KI-basiertes Input Management

KI für bessere Dokumentenprozesse

Unternehmen mit intensivem Endkundengeschäft bearbeiten täglich hunderte Dokumente - oftmals noch in Papierform. Häufig wird dieser Input automatisiert in bestehende Dokumentenmanagementsysteme eingespeist. Die Herausforderung dabei: Die Systeme müssen die Daten digital erfassen, auswerten, klassifizieren und dem richtigen Prozess, Vorgang, Kundenkonto oder Mitarbeiter zuordnen, was früher oder später zu Fehlern führen kann. Die Lösung ist Next Generation Input Management. Daniel Szlapka, Managing Director der DTI GmbH, erläutert im folgenden Beitrag, wie solche Systeme arbeiten, welche Rolle dabei künstliche Intelligenz (KI) spielt und wie Unternehmen den Return On Invest realisieren können.

Image of three business peopleís hands at working meeting
Bild: ©pressmaster/Fotolia.com

Bei der Anschaffung eines neuen Input Managements tragen in vielen Unternehmen die Fachabteilungen zunächst ihre Bedenken vor: Datenschutz, Administration und Kosten werden ins Feld geführt und die Angst, sich wieder einen proprietären Monolith ins Haus zu holen, der früher oder später entweder mit den Anforderungen oder dem Wachstum nicht Schritt halten kann. Heutige Systeme entsprechen aber nicht mehr trägen IT-Tankern; sie sind agil, miteinander vernetzt und stellen unterschiedliche Micro Services bereit. Sie sind nämlich modular aufgebaut, basieren auf aktuellen Datenbank- und Software-Standards. So bildet z.B. das Programmierprinzip Rest (Representational State Transfer) eine Schnittstelle, über die verteilte Systeme und vor allem vernetzte Webservices kommunizieren. Neuere Input Management Systeme arbeiten mit solchen Micro Services, die auf einer gemeinsamen Software-Plattform basieren. Änderungen an einzelnen Micro Services haben keine Rückwirkungen auf ältere oder das Gesamtsystem. Sie sind anders als früher schneller und agiler in die Anwendung zu integrieren. Sie sind deshalb entwicklungsfähig und ermöglichen einen schnellen Roll-out auch neuer Micro Services. Solche Lösungen können darüber hinaus variabel eingesetzt werden: Ob On-Premise, nativ in der Cloud oder in einer hybriden Installation bieten sie den Anwendern eine hohe Nutzer-Experience. Sie funktionieren mit jedem Standardbrowser, sind selbstverständlich responsive programmiert und lassen sich daher mit ihrer grafischen Benutzeroberfläche (GUI, Graphic User Interface) von jedem Endgerät mit Internetzugang aus nutzen. Vor allem integrieren sie KI-Funktionen, die bei der Datenextraktion und Klassifizierung von Dokumenten in der Praxis unverzichtbare Vorteile bieten.

Sprache verstehen

Je nachdem, welche Dokumentenklassen, Prozesse und Bearbeiter in einem Unternehmen bestehen und wie umfangreich Rechnungen, Anträge oder gar Verträge sind und extrahiert werden müssen, um sie richtig zuzuordnen, muss ein IMS agil und leistungsfähig sein. Auf Standardfunktionen wie optische Texterkennung mittels OCR(Optical Character Recognition) kommt es dabei natürlich weiterhin an. Wichtiger ist aber ein Verständnis natürlicher Sprache (Natural Language Processing, NLP), um Inhalte richtig zu verstehen, sie also auszuwerten, um sie dann erst zuzuordnen. Für diese Aufgaben kommen in fortschrittlichen Input Management Lösungen KI-Algorithmen zum Einsatz, die bei der semantischen und kognitiven Interpretation bereits sehr weit fortgeschritten sind. Bei einer Formulierung wie „Herzinfarkt ausgeschlossen“ muss die KI auch die Polarität der Aussage erkennen und eben auswerten, dass bei einer solchen Aussage zwar die Möglichkeit eines Herzinfarktes geprüft, dieser sich aber nicht bestätigt hat. Natürlich muss ein solches System zunächst für die Kundenanforderungen konfiguriert und für die verschiedenen Dokumentenklassen angelernt werden. Dafür werden Trainingsdaten benötigt. Durch menschliche Korrekturen eignet sich die KI das Wissen an, wie sie künftig die Regeln anwenden soll. Dabei arbeiten die Algorithmen nicht in einer Black Box. Bei einem innovativen Input Management lassen sich die Wege der Lernerfolge mittlerweile automatisiert zurückverfolgen und feinsteuern. Denn: Die KI-Algorithmen lernen aus den eigenen Fehlern und werden so immer schlauer. Die Erkennungsrate und die Präzision steigen und damit auch der Automatisierungsgrad.

Überwachtes lernen

Die Funktionen dahinter basieren auf maschinellem Lernen (Machine Learning, ML). Die Klassifizierung und Erkennung von Dokumenten mit ML erfolgt im laufenden Produktivbetrieb mit den eingehenden Dokumenten sowohl mit einem überwachten als auch mit einem unbeaufsichtigten kontinuierlichen Training. Beim überwachten Lernen analysieren die Sachbearbeiter die Klassifikationen der ihnen zugeordneten Dokumente, korrigieren Falscheinträge oder unzulässige Interpretationen und bewerten sie. Mit diesen Korrekturen oder Freigaben geben sie den KI-Algorithmen auch neue Muster oder modifizieren bisher gelernte Regeln. Diese Korrekturen nutzt die KI, um mit unbeaufsichtigtem Lernen sich selbständig zu verbessern. Die Algorithmen verfeinern damit ihre Erkennungsleistung im laufenden Produktivbetrieb. Damit generiert die KI zusätzliches Wissen über Regeln und Ausnahmen und baut sie in ihre weitere Anwendung ein. Die KI lernt also einerseits selbsttätig, orientiert sich aber am Menschen und das bei einer größtmöglichen Transparenz und Nachvollziehbarkeit ihrer Lernerfolge. Schon nach kurzer Zeit können solche Input Management Lösungen eine Erkennungsrate von bis zu 95 Prozent und eine Präzision von bis zu 99 Prozent erreichen. Bei täglich 1.000 Dokumenten wären dann nur noch bei 50 bis 60 Dokumenten nach der Klassifikation Korrekturen durch den Menschen notwendig.

Bild: DTI Schweiz AG

Return on Invest in kürzester Zeit

Und das bedeutet gleichzeitig, dass mindestens 940 Dokumente und deren Inhalte aus Formularen und Tabellen, Zahlen, Handschriften und unterschiedlich lange Texte, von Einzeilern bis zu mehrseitigen Verträgen, richtig eingescannt, ausgewertet und automatisch richtig klassifiziert sind. Sie liegen dann dem richtigen Bearbeiter vor, die Daten sind in den richtigen Zielsystemen bzw. elektronischen Kundenakten angekommen. Für die Arbeit der Mitarbeiter in Schadenabteilungen oder Kundencentern bedeutet dies, dass sie die Dokumente in ihrem digitalen Workflow nahtlos bearbeiten können. Der interne Aufwand für Nachfragen oder die Suche nach Dokumenten entfällt. Alleine auf dieser Basis kann ein KI-basiertes Input Management je nach Unternehmensgröße schnell große Einsparungen erzielen.

Seiten: 1 2Auf einer Seite lesen

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige