Explainable Artificial Intelligence

KI-Entscheidungen verstehen

Wie KI-Systeme zu Entscheidungen kommen, bleibt oft verborgen. Um sich wirklich auf solche Systeme verlassen zu können, muss die Blackbox geöffnet werden. Dafür sorgt der Ansatz Explainable AI (XAI), bei dem z.B. interpretierbarer KPI-Labels zum Einsatz kommen.
Layer-Modell Qualitatives Labeln
Layer-Modell Qualitatives LabelnBild: PSI FLS Fuzzy Logik & Neuro Systeme GmbH

Qualitatives Labeln ist eine KI-Methode, die Entscheidungs- und Optimierungsalgorithmen mit maschinellem Lernen verbindet und bereits industriell eingesetzt wird. Sie zielt darauf ab, Zusammenhänge aus skalierbaren Rohdaten zu erlernen, die in beliebigen Geschäftsprozessen entstehen. Das Ziel ist eine maximale Annährung an die definierten Geschäftsprozessziele. dafür legt die Lösung auf den Input- und Output-Mustern des betreffenden Prozesses KPI-basierte Bewertungen fest. Diese definieren, welche Muster für welche Werte eher positiv und für welche eher negativ zur Erreichung der Geschäftsprozessziele sind. Im nächsten Schritt lassen sich über diese Bewertungen Zeitreihen bilden und sogenannte Datencluster ermitteln. Die Datencluster sind entweder als Ergebnis einer KI-Geschäftsprozessdatenanalyse zu verstehen oder dienen als Basis für darauf aufbauende KI-Systeme. Doch wie kann dieses Vorgehen dabei helfen, KI-Systeme besser zu verstehen? Indem qualitatives Labeln einen Zusammenhang herstellt zwischen der Datenperspektive des Geschäftsprozesses und den angeschlossenen KI-Algorithmen, entsteht eine neue, KPI-bezogene Sicht auf die Ergebnisse des Geschäftsprozesses. Dadurch sind auch die Ergebnisse der mit den gelabelten Daten trainierten KI-Systeme verständlicher. Durch die KI-basierte Bearbeitung des Geschäftsprozesses öffnet sich eine zusätzliche, automatisiert erlernte und erklärbare Sicht auf die Perspektive des Zielgeschäftsprozesses. Kurzum: War ein KI-System aus der Perspektive des Geschäftsprozesses bislang eine Blackbox, kann eine geschäftsprozessbezogene Erklärungskomponente helfen, das Verhalten des KI-Systems nachzuvollziehen.

Das Modell zeigt schematisch, wie KI-Systeme, die zur Behandlung von Geschäftsprozessen eingesetzt werden, im Deep-Qualicision-Analyse-Layer eingebettet werden können.
Das Modell zeigt schematisch, wie KI-Systeme, die zur Behandlung von Geschäftsprozessen eingesetzt werden, im Deep-Qualicision-Analyse-Layer eingebettet werden können. Bild: PSI FLS Fuzzy Logik & Neuro Systeme GmbH

Machine Learning

Dreh- und Angelpunkt des qualitativen Labelns ist ein maschinelles Lernverfahren: Dieses erkennt anhand von Geschäftsprozessdaten selbsttätig KPI-Zielkonflikte aus Zeitreihendaten. Als Initialinput sind neben den Prozessrohdaten lediglich KPI-Bewertungsfunktionen notwendig. Pro Geschäftsprozess-KPI wird definiert, welche Datenwerte dem KPI-Ziel als eher zuträglich (positiv) und welche Datenwerte als eher abträglich (negativ) einzustufen sind. Über die Zeitreihenbezüge lassen sich die Prozessdaten schließlich derart semantisch ordnen, dass der Algorithmus selbstständig erkennt, in welchen Situationen die Rohdaten wie zu labeln sind. Das System ermittelt also, welche Datenkonstellationen und -muster sich positiv und welche sich negativ auf die Erreichung der KPI-Ziele auswirken. Im Ergebnis kann das System methodisch abgesichert Zusammenhänge erlernen. Wo manuelle Labeling-Prozesse zunehmend an ihre Grenzen stoßen und zum Flaschenhals der Datenaufbereitung werden, kann Qualitatives Labeln als umgebender, datenaufbereitender Layer jedes KI-System unterstützen, indem Zusammenhänge auf Rohdaten maschinell voranalysiert und hinsichtlich ihrer Wirkung auf die Ziel-KPIs interpretiert werden.

Einfach zu interpretieren

Abweichend von anderen Systemen stützt sich dieses Verfahren dabei zunächst nicht auf KI-Fachwissen, sondern auf Wissen über den Prozess, für den das KI-System entwickelt wurde, indem Prozessrohdaten durch Bewerten von Prozess-KPIs qualifiziert werden. Auf diese Weise entstehen qualitativ gelabelte Daten, die in Verbindung mit einer Visualisierung der gelernten Zusammenhänge auch für KI-Laien interpretierbare Ergebnisse liefern. Damit erhalten auch darauf aufbauende KI-Verfahren eine einfacher zu verstehende Lerngrundlage.

Aus der Praxis

Qualitatives Labeln kommt in industriellen Prozessen sowohl für optimierende als auch analysierende Anwendungen zum Einsatz. Allen Prozessen sind dabei sehr heterogene KPI-Zielsysteme gemein. Die Optimierung von Produktionsreihenfolgen der Kundenaufträge ist beispielsweise in der Automobilproduktion ein wesentlicher Geschäftsprozess. Denn eine wirtschaftliche Produktion wird vor allem durch die Ausbalancierung der aktuellen Struktur der Auftragsmengen und Zusammensetzung aus Ausstattungsmerkmalen erreicht. Die KPIs – nicht selten im zweistelligen Bereich und in Konflikt zu einander – beschreiben einerseits die technische Fähigkeit der Produktionslinien und andererseits die Zusammensetzung des Auftragspakets . Die Aufgabe des Qualitativen Labelns besteht folglich in der Datenaufbereitung für ein KI-Optimierungsverfahren, das die Zielkonflikte ausbalanciert. Dafürt labelt das System jedes Auftragspaket mit Graden der Zielerfüllbarkeit und berechnet und visualisiert diese mit Hilfe von Zielkonflikttabellen in Matrix- bzw. Clusterform. Die Kompromissbildung zur Bestimmung Produktionsreihenfolgen ist auf diese Weise nachvollziehbar und erklärbar.

Seiten: 1 2Auf einer Seite lesen

PSI FLS Fuzzy Logik & Neuro Systeme GmbH

Das könnte Sie auch Interessieren

Bild: Fraunhofer IGD
Bild: Fraunhofer IGD
Software Arrange beschleunigt Absortierprozesse

Software Arrange beschleunigt Absortierprozesse

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.

Bild: Benteler International AG
Bild: Benteler International AG
Produktionsfehler: KI findet die Nadel im Heuhaufen

Produktionsfehler: KI findet die Nadel im Heuhaufen

In der Qualitätsprüfung ist Zeit ein wichtiger Faktor: Wer Fehler rechtzeitig findet, kann sie effektiv und kostensparend beheben. Gemeinsam mit dem Fraunhofer IEM setzt der Automobilzulieferer Benteler dafür in der Warmumformung von Fahrzeugteilen auf Echtzeit-Sensordaten und Künstliche Intelligenz. Damit können Produktionsfehler schneller erkannt, behoben und zukünftig sogar vermieden werden.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.