Der Motor für ‚KI made in Germany‘

Maschinelles und tiefes Lernen

Der Motor für ‚KI made in Germany‘

Die Anfänge der künstlichen Intelligenz gehen auf die 1950er Jahre zurück. Aber erst seit wenigen Jahren erlebt das Thema einen wahren Boom. Grund dafür sind nützliche KI-Anwendungen, vom Sprachassistenten bis zur Auswertung von Röntgenbildern. Welche Weichen müssen wir in Deutschland stellen, damit die Wirtschaft beim Einsatz und der Entwicklung von KI mit der Weltspitze mithalten kann?

 (Bild: ©phonlamaiphoto/stock.adobe.com)

(Bild: ©phonlamaiphoto/stock.adobe.com)

Die künftigen Auswirkungen von KI auf wirtschaftliche Prozesse wie auch unseren Alltag lassen sich längst nicht absehen – und kaum überschätzen. Die technologische Entwicklung darf daher nicht sich selbst überlassen werden, sondern muss dem Wohl der Gesellschaft dienen und den Wirtschaftsstandort Deutschland stärken. Dies gilt es in einem breiten öffentlichen Dialog zu klären. Damit verbunden sind zentrale Fragen für Forschung und Wissenschaft: Welche KI-Kompetenzen müssen wir in Deutschland aufbauen, um die gute Ausgangsposition in der internationalen KI-Forschung zu stärken? In welche Forschungsthemen sollte im Sinne einer zukunftsfähigen Ausrichtung künftig verstärkt investiert werden?

Grundlage bilden Massendaten

Technologischer Treiber der KI-Entwicklung sind das maschinelle Lernen und das tiefe Lernen. Verbunden mit der Verfügbarkeit von Massendaten sowie Fortschritten beim schnellen, parallelen Rechnen waren sie für die spektakulären KI-Durchbrüche der vergangenen Jahre verantwortlich – angefangen von DeepMinds AlphaZero, welches durch intensives Spielen gegen sich selbst erlernt, mehrere Brettspiele auf übermenschlichem Niveau zu spielen, bis hin zu modernen Übersetzungs- und Bilderkennungssystemen. Gegenüber dem umfassenden Begriff der künstlichen Intelligenz grenzen sich maschinelles und tiefes Lernen wie folgt ab:

  • Künstliche Intelligenz definiert Herausforderungen, die es zu lösen gilt und entwickelt Lösungsansätze.
  • Maschinelles Lernen ist eine grundlegende Methode der künstlichen Intelligenz. Sie zielt darauf, dass Maschinen ohne explizite Programmierung eines konkreten Lösungswegs automatisiert sinnvolle Ergebnisse liefern. Spezielle Algorithmen lernen dabei aus den vorliegenden Beispieldaten Modelle, die dann auch auf neue, zuvor noch nicht gesehene Daten angewendet werden können.
  • Maschinelles Lernen mit großen neuronalen Netzen wird als tiefes Lernen (Deep Learning) bezeichnet. Es stellt derzeit einige der leistungsfähigsten Ansätze des Maschinellen Lernens bereit.

Heute werden smarte Lösungen noch vornehmlich manuell programmiert. Die aktuellen Entwicklungen auf dem Gebiet der künstlichen Intelligenz markieren jedoch einen Paradigmenwechsel: Statt Verarbeitungsschritte manuell zu kodieren, wird KI-basierten Systemen die Fähigkeit zu lernen programmiert. Mithilfe des maschinellen Lernens können Agenten aus sehr vielen Beispielsituationen Muster erlernen und auf ähnliche Situationen übertragen. Auch beim maschinellen Lernen programmiert weiterhin der Mensch – allerdings nicht mehr fertige Lösungen. Stattdessen entwickelt er Programme, die aufgrund von Trainingsdaten die Lösung erlernen.

Deep Learning aufwendig

Die größten KI-Erfolge basieren derzeit auf tiefen neuronalen Netzen (tiefes Lernen oder Deep Learning). Hierbei verarbeiten eine große Zahl an künstlichen Neuronen Eingangsinformation in mehreren Schichten und stellen am Ausgang das Ergebnis bereit. So sind beispielsweise moderne Übersetzungs- und Bilderkennungssysteme ohne tiefes Lernen nicht denkbar. Neuronale Netzwerke besitzen eine hohe Expressivität, oder vereinfacht gesprochen: die Fähigkeit, jede kontinuierliche Funktion beliebig genau zu approximieren, sich ihr also anzunähern. Dadurch gestaltet sich ihr Training oft sehr daten- und zeitintensiv. Gleichzeitig ist es aber in der Regel möglich, ein für eine spezielle Aufgabe aufwendig trainiertes Netz über Transferlernen mit wenig Aufwand auf eine neue Aufgabenstellung anzupassen.

Seiten: 1 2Auf einer Seite lesen

Thematik: Allgemein
www.acatech.de

Das könnte Sie auch Interessieren

Bild: Fraunhofer IGD
Bild: Fraunhofer IGD
Software Arrange beschleunigt Absortierprozesse

Software Arrange beschleunigt Absortierprozesse

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.

Bild: Benteler International AG
Bild: Benteler International AG
Produktionsfehler: KI findet die Nadel im Heuhaufen

Produktionsfehler: KI findet die Nadel im Heuhaufen

In der Qualitätsprüfung ist Zeit ein wichtiger Faktor: Wer Fehler rechtzeitig findet, kann sie effektiv und kostensparend beheben. Gemeinsam mit dem Fraunhofer IEM setzt der Automobilzulieferer Benteler dafür in der Warmumformung von Fahrzeugteilen auf Echtzeit-Sensordaten und Künstliche Intelligenz. Damit können Produktionsfehler schneller erkannt, behoben und zukünftig sogar vermieden werden.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.