Der Motor für ‚KI made in Germany‘

Maschinelles und tiefes Lernen

Der Motor für ‚KI made in Germany‘

Die Anfänge der künstlichen Intelligenz gehen auf die 1950er Jahre zurück. Aber erst seit wenigen Jahren erlebt das Thema einen wahren Boom. Grund dafür sind nützliche KI-Anwendungen, vom Sprachassistenten bis zur Auswertung von Röntgenbildern. Welche Weichen müssen wir in Deutschland stellen, damit die Wirtschaft beim Einsatz und der Entwicklung von KI mit der Weltspitze mithalten kann?

 (Bild: ©phonlamaiphoto/stock.adobe.com)

(Bild: ©phonlamaiphoto/stock.adobe.com)

Die künftigen Auswirkungen von KI auf wirtschaftliche Prozesse wie auch unseren Alltag lassen sich längst nicht absehen – und kaum überschätzen. Die technologische Entwicklung darf daher nicht sich selbst überlassen werden, sondern muss dem Wohl der Gesellschaft dienen und den Wirtschaftsstandort Deutschland stärken. Dies gilt es in einem breiten öffentlichen Dialog zu klären. Damit verbunden sind zentrale Fragen für Forschung und Wissenschaft: Welche KI-Kompetenzen müssen wir in Deutschland aufbauen, um die gute Ausgangsposition in der internationalen KI-Forschung zu stärken? In welche Forschungsthemen sollte im Sinne einer zukunftsfähigen Ausrichtung künftig verstärkt investiert werden?

Grundlage bilden Massendaten

Technologischer Treiber der KI-Entwicklung sind das maschinelle Lernen und das tiefe Lernen. Verbunden mit der Verfügbarkeit von Massendaten sowie Fortschritten beim schnellen, parallelen Rechnen waren sie für die spektakulären KI-Durchbrüche der vergangenen Jahre verantwortlich – angefangen von DeepMinds AlphaZero, welches durch intensives Spielen gegen sich selbst erlernt, mehrere Brettspiele auf übermenschlichem Niveau zu spielen, bis hin zu modernen Übersetzungs- und Bilderkennungssystemen. Gegenüber dem umfassenden Begriff der künstlichen Intelligenz grenzen sich maschinelles und tiefes Lernen wie folgt ab:

  • Künstliche Intelligenz definiert Herausforderungen, die es zu lösen gilt und entwickelt Lösungsansätze.
  • Maschinelles Lernen ist eine grundlegende Methode der künstlichen Intelligenz. Sie zielt darauf, dass Maschinen ohne explizite Programmierung eines konkreten Lösungswegs automatisiert sinnvolle Ergebnisse liefern. Spezielle Algorithmen lernen dabei aus den vorliegenden Beispieldaten Modelle, die dann auch auf neue, zuvor noch nicht gesehene Daten angewendet werden können.
  • Maschinelles Lernen mit großen neuronalen Netzen wird als tiefes Lernen (Deep Learning) bezeichnet. Es stellt derzeit einige der leistungsfähigsten Ansätze des Maschinellen Lernens bereit.

Heute werden smarte Lösungen noch vornehmlich manuell programmiert. Die aktuellen Entwicklungen auf dem Gebiet der künstlichen Intelligenz markieren jedoch einen Paradigmenwechsel: Statt Verarbeitungsschritte manuell zu kodieren, wird KI-basierten Systemen die Fähigkeit zu lernen programmiert. Mithilfe des maschinellen Lernens können Agenten aus sehr vielen Beispielsituationen Muster erlernen und auf ähnliche Situationen übertragen. Auch beim maschinellen Lernen programmiert weiterhin der Mensch – allerdings nicht mehr fertige Lösungen. Stattdessen entwickelt er Programme, die aufgrund von Trainingsdaten die Lösung erlernen.

Deep Learning aufwendig

Die größten KI-Erfolge basieren derzeit auf tiefen neuronalen Netzen (tiefes Lernen oder Deep Learning). Hierbei verarbeiten eine große Zahl an künstlichen Neuronen Eingangsinformation in mehreren Schichten und stellen am Ausgang das Ergebnis bereit. So sind beispielsweise moderne Übersetzungs- und Bilderkennungssysteme ohne tiefes Lernen nicht denkbar. Neuronale Netzwerke besitzen eine hohe Expressivität, oder vereinfacht gesprochen: die Fähigkeit, jede kontinuierliche Funktion beliebig genau zu approximieren, sich ihr also anzunähern. Dadurch gestaltet sich ihr Training oft sehr daten- und zeitintensiv. Gleichzeitig ist es aber in der Regel möglich, ein für eine spezielle Aufgabe aufwendig trainiertes Netz über Transferlernen mit wenig Aufwand auf eine neue Aufgabenstellung anzupassen.

Seiten: 1 2Auf einer Seite lesen

Thematik: Allgemein
www.acatech.de

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige