KI-Studie des Fraunhofer IAO

KI-Studie des Fraunhofer IAO Der nächste Schritt auf dem Weg zur Industrie 4.0 Die technologischen Rahmenbedingungen führen dazu, dass Firmen KI-Lösungen häufiger diskutieren als integrieren. In einer Studie hat das […]

KI-Studie des Fraunhofer IAO

Der nächste Schritt auf dem Weg zur Industrie 4.0

Bild: Fraunhofer-Institut f. Arbeitswirtschaft

Die technologischen Rahmenbedingungen führen dazu, dass Firmen KI-Lösungen häufiger diskutieren als integrieren. In einer Studie hat das Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO untersucht, wo KI in Unternehmen zu finden ist und was sie dort leistet.

Nach der Vernetzung der Produktion und echtzeitnaher Datenverfügbarkeit ist ein nächster logischer Schritt der Weiterentwicklung die Anwendung autonomer und lernender Systeme. Diese Anwendungen schwacher künstlicher Intelligenz (KI) fokussieren auf die Lösung konkreter Anwendungsprobleme auf Basis der Methoden aus der Mathematik und Informatik, wobei die entwickelten Systeme zur Selbstoptimierung fähig sind.

Wenige Anwendungen

Die vom Fraunhofer IAO im Jahr 2019 durchgeführte Studie ‚Künstliche Intelligenz in der Unternehmenspraxis‘ befragte mehr als 300 Unternehmen aller Branchen aus Deutschland, von denen rund zwei Drittel weniger als 2.500 Personen beschäftigen. Die Ergebnisse zeigen, dass sich bereits drei Viertel der Unternehmen mit dem Thema KI beschäftigen, was die Bedeutung der Zukunftstechnologie untermauert. Im Gegensatz dazu setzen allerdings erst 16 Prozent der befragten Unternehmen KI-Anwendungen im Betrieb ein. Die größten Anwendungsfelder für KI liegen dabei im Bereich der Daten- und Informationsextraktion sowie in den darauf aufbauenden Analysen und Prognosen. Auf dem Shopfloor finden sich daher aktuell vorrangig KI-Anwendungsfälle, die auf Maschinendaten basieren, um Prozesse effizienter zu gestalten. Die häufigsten Anwendungen liegen im Bereich Predictive Maintenance und Predictive Quality. Lösungen, welche den Menschen in seiner täglichen Arbeit individuell unterstützen und ihn assistieren, sind heute noch wenig verbreitet. Das Potenzial dafür ist jedoch riesig: Augmented-Intelligence-Lösungen können die menschlichen kognitiven Fähigkeiten erweitern und eine dynamische Interaktion zwischen Mitarbeitenden und technischen Systemen ermöglichen, indem sie Entscheidungsprozesse vorbereiten und die Ausführung von Tätigkeiten optimieren.

Vielfältiges Potenzial

Bei solchen unterstützenden KI-Systemen spielt der Autonomiegrad eine große Rolle. Systeme, die ihre Aufgaben vollständig autonom ausführen und dazu noch selbstständig neue Tätigkeitsfelder für sich erschließen, nutzen lediglich vier Prozent der Anwender. Ein Großteil der im Rahmen der Fraunhofer-Studie befragten Unternehmen gab an, dass ihre KI-Anwendung jedoch bereits teilweise autonome Entscheidungen trifft (53 Prozent), oder dass die KI den Menschen lediglich bei Entscheidungen unterstützt (28 Prozent). Um die Einbindung der Mitarbeitenden in solche Human-in-the-Loop-Systeme zielführend zu gestalten und auch die nötige Akzeptanz und das Vertrauen für eine erfolgreiche Nutzung zu erreichen, muss die KI für den Beschäftigten verständlich und nachvollziehbar sein. Laut der Studie verbessern sich für ein Unternehmen durch einen zielführenden Einsatz vor allem die Entscheidungsqualität und die Durchlauf- sowie Bearbeitungszeiten im Prozess. Ferner steigen die Kundenzufriedenheit und die Qualität der Arbeitsergebnisse durch KI-Anwendungen. Zusätzlich erkennen Unternehmen verstärkt Potenziale, durch KI nicht nur ihre Prozesse zu verbessern, sondern auch neue Produkte und Dienstleistungen zu entwickeln.

Seiten: 1 2Auf einer Seite lesen

Thematik: Zahlenfutter
|
Fraunhofer-Institut f. Arbeitswirtschaft
www.ipa.fraunhofer.de

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige