Capturing Speed

Capturing Speed

AI Powered 3D Vision System for Robotic Pick&Place Applications

VCV-Cortex is an AI powered stereovision system developed for robotic applications. It works with any camera and optical system to provide the desired range, FoV and precision. Unlike structured light cameras, it can work on dark and/or shiny objects at high speed.

Bild: Computer Vision Ltd.

Stereovision is an imitation of human visual system and is one of the first attempts at building a 3D vision system for robots and machines. However, traditional algorithms have very low accuracy and break down facing texture-less surfaces. As a result, active systems, specially structured light cameras, are nowadays the standard 3D vision systems of the industrial world. Structured light cameras are perfect for metrology and quality inspection. However, for lack of a better solution, they are also being fitted into robotic pick&place applications where they leave a lot to be desired; the process of casting the light pattern and capturing can be time consuming. The same process prevents them from capturing dark and/or shiny objects in one shot. They require HDR imaging and that means more wasted time. They cannot work next to each other because of light projection cross talk. They can be blinded by an intense light like that of welding or the sun. They have low resolution and offer limited FoV and range. As a result of the above issues, industries still prefer to use humans or 2D vision to solve manufacturing challenges.

Bild: Computer Vision Ltd.

Scene Capture in ms

Unlike structured light cameras, VCV-Cortex has been specifically developed for robotic pick&place applications. It is an AI powered stereovision system without the shortcomings of traditional systems. The system offers a fully integrated pipeline for capturing the scene, finding the desired object and calculating its 6D pose. Being a pre-trained AI, it needs less than one minute to learn the geometry of any new object using its 3D model to find it in the scene. It can use any combination of off-the-shelf 2D cameras and lenses to offer the desired resolution, range, FoV and precision. The capture time is only limited by the camera and available light in the scene and thus works on moving, static, shiny and dark objects alike. It is a passive system and thus is immune to interference by intense light from the sun or welding or a similar vision system (cross-talking). Perhaps the most important advantage is its capturing speed. Relying on 2D cameras, it requires milliseconds to capture the scene during which the robotic arm needs to be out of the way. Rest of the processing will happen on the hardware resulting in larger overlap of vision and robotic cycle and overall significantly shorter pick and place cycle time. Regardless of the above, the current version of VCV-Cortex can offer a full vision cycle (capture, object recognition and pose estimation) under two seconds. The system comes preinstalled on an industrial embedded box and can be combined with a custom imaging system or obtained as one of the following preconfigured systems:

  • VCV-Cortex M: 5MP camera, up to 800mm range, 560x470mm FoV
  • VCV-Cortex L: 12MP camera, up to 1.500mm range, 1,760×1,300mm FoV

User can choose one of the above mentioned systems or design a completely different imaging system based on task requirements. Cameras are installed at the desirable location and are calibrated in less than a minute using VCV-Cortex calibration module and pad. 3D model of the desired object is uploaded to the system and the system is ready to find the object in the scene and provide its 6D pose to robot’s PLC.

Bild: Computer Vision Ltd.

Vision cycle less than 2s

In a customer challenge, injection molding machines produced four parts every 12s. The parts were dropped randomly on top of each other on a work table of 800x600mm effectively creating a 3D bin-sorting environment from which the robot was supposed to pick the parts and sort them into different bins. Given the speed of production, a full vision cycle of less than 2s was required. Large FoV and dark and shiny finish of the parts made it impossible for existing structured light cameras to achieve the time requirements. Using VCV-Cortex L, the manufacturing company was able to achieve a full cycle time of 1.7s which enabled them to relax some of their requirements for the type of robot they wanted to use and automate a physically demanding tedious job and save significantly on their costs.

Summary

VCV-Cortex is an AI powered stereovision system that offers fully integrated pipeline for 3D vision, object recognition and pose estimation developed exclusively for robotic pick&place operations. Due to its passive nature, it outperforms structured light cameras where it matters and enables robots to perform more challenging pick&place operations at a much faster speed.

Computer Vision Ltd.
www.vcvision.ca

Das könnte Sie auch Interessieren

Bild: Fraunhofer IGD
Bild: Fraunhofer IGD
Software Arrange beschleunigt Absortierprozesse

Software Arrange beschleunigt Absortierprozesse

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.

Bild: Benteler International AG
Bild: Benteler International AG
Produktionsfehler: KI findet die Nadel im Heuhaufen

Produktionsfehler: KI findet die Nadel im Heuhaufen

In der Qualitätsprüfung ist Zeit ein wichtiger Faktor: Wer Fehler rechtzeitig findet, kann sie effektiv und kostensparend beheben. Gemeinsam mit dem Fraunhofer IEM setzt der Automobilzulieferer Benteler dafür in der Warmumformung von Fahrzeugteilen auf Echtzeit-Sensordaten und Künstliche Intelligenz. Damit können Produktionsfehler schneller erkannt, behoben und zukünftig sogar vermieden werden.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.