Bild: InSystems Automation GmbH
Transportroboter sind heute bereits insofern schwarmintelligent, als sie Transportaufträge innerhalb ihrer Flotte flexibel erledigen, autonom in einer komplexen, sich verändernden Umgebung navigieren und plötzlich auftretende Hindernisse erkennen und vermeiden können. Sie erledigen selbständig die an sie gestellten Aufgaben und werden von einem zentralen Flottenmanagementsystem disponiert und überwacht. Kommende Modelle werden über einen wesentlich höheren Grad kollektiver sowie kooperativer Intelligenz verfügen. Egal ob Kisten, Paletten oder Fässer, künftige Transportroboter entscheiden untereinander ohne ein zentrales Softwaremanagement, welches Fahrzeug einen Transportauftrag übernehmen soll. Maßgeblich hierfür werden verschiedene Leistungsindikatoren (KPIs) wie der Batterie- und Wartungszustand, Fahrtroute und -zeit, aber auch die individuellen Fähigkeiten eines jeden Roboters sein. Auf der anderen Seite verbessert sich die Flotte nach sogenannten Systemgruppenzielen oder globalen Zielen. Diese können etwa lauten, dass Transportaufträge so schnell wie möglich oder aber mit so wenig Verschleiß wie möglich abgearbeitet werden sollen. Die kollektive Intelligenz besteht nun darin, dass die Flotte Strategien entwickelt, wie sie die ihr gestellten Ziele idealerweise erreichen kann, ohne dabei die eigenen individuellen Ziele (z.B. Füllstand der Batterie darf nicht unter 20% fallen) zu missachten. Eine große Herausforderung und notwendiger Bestandteil solcher dezentral organisierten Verbünde ist die Selbstkontrolle des Schwarms durch Verwendung geeigneter Monitoring-Methoden, ob die vorgegebenen Ziele eingehalten werden konnten, um eventuell Strategieanpassungen vorzunehmen.
KI-Methoden bei kollaborativen Systemverbünden
In einem weiteren Entwicklungsschritt ist davon auszugehen, dass Methoden der künstlichen Intelligenz immer wichtiger werden. Kollaborative Systemverbünde werden Muster erfassen können, die es ihnen erlauben, auf Schwankungen im intralogistischen Materialprozess zu reagieren. Fallen innerhalb bestimmter Zeiten (z.B. beim Schichtwechsel) mehr Transporte an einer Maschine an, werden Transportroboter von der Flotte vorausschauend an den Hotspots positioniert und bereitgehalten. Durch diese Art des Flottenmanagements können die vorhandenen Transportkapazitäten effizienter genutzt werden. Geplant ist außerdem die Verbesserung einzelner individueller Fähigkeiten wie das Docking an einer Ladestation oder das vorausschauende Erkennen von Wartungs- und Reparaturarbeiten.
Fazit
Heutige Transportroboter agieren bereits schwarmintelligent und können komplexe Transportaufträge in einem Verbund lösen. Sie verfügen über kollektive bzw. kooperative Intelligenz. Durch den Einsatz neuer Technologien und Methoden, vor allem im Bereich der KI, ist mit einem entscheidenden Innovationssprung bei der Performance von Transportrobotern in den nächsten Jahren zu rechnen. Das Ziel ist es, die Dynamik von intralogistischen Materialprozessen mit selbstlernenden, sich selbst optimierenden Verbundsystemen zu kontrollieren.