Multiagentensysteme für die autonome Produktion

Im Forschungsprojekt MAS4AI (Multi-Agent Systems for pervasive Artificial Intelligence for assisting humans in modular production environments) hat sich ein Konsortium aus siebzehn europäischen Partnern das Ziel gesetzt, ein Multiagentensysteme für die autonome modulare Produktion zu entwickeln.
Bild: Technologie-Initiative SmartFactoryKL e.V.

Das MAS4AI-System orientiert sich an ausgewählten Industriebranchen und plant in den nächsten drei Jahren deren smarte Digitalisierung mit Werkzeugen der künstlichen Intelligenz (KI). Ziel ist eine resiliente Produktion, die flexibel auf wechselnde Anforderungen oder Störungen in den Wertschöpfungsnetzen reagieren kann. Grundlage ist dabei eine große Produktvielfalt mit Losgröße 1 in komplexen Fertigungsumgebungen.

Ein Problem im Kollektiv lösen

Multiagentensysteme sind ein Forschungsgebiet der künstlichen Intelligenz, bei dem mehrere ‘intelligente‘, unterschiedlich spezialisierte und meist autonome Softwarebausteine (Agenten oder Bots), koordiniert handeln, um kollektiv ein Problem zu lösen. Dabei orientieren sich die Forscher am langfristigen Ziel einer stabilen Fertigung, die u.a. auf Shared Production und Production-as-a-Service setzt. Um diese Vision umsetzen zu können, ist die Kommunikation, Abstimmung und Koordination von Skills (Produktionsfertigkeiten) in einem Produktionsnetzwerk notwendig. Diese Koordination sollen in Zukunft KI-Methoden übernehmen, so die Forscher. Perspektivisch haben die europäischen Projektpartner eine Produktion im Blick, die verteilt in europäischen Netzwerken (wie GAIA-X) möglich sein kann.

Der Mensch soll die Kontrolle behalten

Die Wissenschaftler und Ingenieure aus Deutschland, Spanien, Italien, Polen, Griechenland, Litauen und den Niederlanden wollen zunächst an einer modularen Systemarchitektur und einem Kommunikationsgerüst arbeiten, um die Grundlage für die Integration der industriellen KI-Dienste für die intelligente Produktion zu schaffen. Dabei soll der Mensch stets die Kontrolle über die KI-Technologien behalten, so die Experten. Voraussetzung dafür sei, dass die KI-Prozesse so aufbereitet werden, dass sie für Werker jederzeit verständlich sind — nur so könnten sie validiert, optimiert oder geändert werden. In MAS4AI sollen Demonstratoren entwickelt werden, die sich an einer Reihe industrieller Anwendungsfälle orientieren. Das sind europäische Industriesektoren mit hoher Wertschöpfung, wie bspw. Unternehmen aus der Automobilindustrie, der Auftragsfertigung, der Fahrradproduktion, oder der Holzverarbeitung.

„MAS4AI passt perfekt in unser Konzept von Production Level 4, das auf Production-Bots und modular aufgebauten Netzwerken basiert. Wir stellen uns das so vor, dass zukünftige Produktionsmittel ihre Fähigkeiten (Skills) in Netzwerken anbieten und die Produkte diese selbstgesteuert abrufen“, sagt Prof. Martin Ruskowski, Vorstandsvorsitzender der SmartFactory-KL und Leiter des Forschungsbereiches Innovative Fabriksysteme am DFKI. „In unserer Vision kennt ein Produkt seine Eigenschaften und seinen aktuellen Fertigungsfortschritt. Zwischen den Skills sucht es sich selbständig seinen Weg zur eigenen Herstellung. Die kann in einer Halle stattfinden, aber auch in einem europaweiten Netzwerk.“

Die Entwicklungen des Konsortiums umfassen:

  • Ein Multi-Agenten-System zur Verteilung von KI-Komponenten in verschiedenen Hierarchieebenen.
  • KI-Agenten, die wissensbasierte Repräsentation mit Semantic Web-Technologien verwenden.
  • KI-Agenten für die hierarchische Planung von Produktionsprozessen.
  • Modellbasierter KI-Agent für maschinelles Lernen (ML).

Ein grundlegendes Konzept in MAS4AI ist die Integration aller intelligenten Komponenten (Smart Components sind Maschinen mit Eigenschaften wie Selbststeuerung, Selbstbeschreibung oder Selbstlernfähigkeit) in eine ganzheitliche Systemarchitektur. Das ermöglicht eine einfache Entwicklung und den Einsatz industrieller KI-Technologien. Davon profitieren Softwareentwickler, Systemintegratoren und Endbenutzer, weil die Hürde für den KI-Einsatz niedrig ist. „Wir rechnen damit, dass dadurch völlig neue Ideen für Geschäftsmodelle entstehen und sich neue Marktchancen ergeben“, sagt Ruskowski.

Die Projektpartner sind:

  • Deutsches Forschungszentrum für Künstliche Intelligenz, Deutschland
  • Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek, Niederlande
  • University of Patras – Laboratory for Manufacturing Systems & Automation, Griechenland
  • Fundacion Tecnalia Research and Innovation, Spanien
  • Asociacion De Investigacion Metalurgica del Noroeste, Spanien
  • University of Silesia, Polen
  • Volkswagen, Deutschland
  • SCM Group Spa, Italien
  • JSC Baltik Vairas, Litauen
  • VDL Industrial Modules, Niederlande
  • Fersa Bearings, Spanien
  • Semaku, Niederlande
  • Symvouloi Kai Proionta Logismikou, Griechenland
  • Flexis, Deutschland
  • Sisteplant, Spanien
  • D.M.D. Computers, Italien
  • Smart Manufacturing Competences Centre Intechcentras, Litauen
Technologie-Initiative SmartFactoryKL e.V.

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige