Implizites Planungswissen per KI integriert

Implizites Planungswissen per KI integriert

Bild: ©sdecoret / Fotolia.com

Trotz IT-Unterstützung müssen Schichtleiter und Fertigungsplaner immer wieder in laufende Produktionsprozesse eingreifen. Künstliche Intelligenz (KI) hilft dabei, die Eingriffe zu verringern und die Produktionsqualität zu erhöhen.
Die Ursachen für die steigenden Ansprüche an eine flexible Produktion steigen zum einen durch die Individualisierung der Kundenwünsche, die zu einer erhöhten Produktvarianz führt. Zum anderen sorgen hohe Rohstoffkosten und der zunehmende Wettbewerbsdruck dafür, dass produzierende Unternehmen eine möglichst hohe Auslastung ihrer Maschinen und Anlagen erreichen und Ausschüsse reduzieren müssen. Doch trotz weitgehender Automatisierung können die Anforderungen einer dynamischen Multivariantenproduktion nicht erfüllt werden. ERP- und Manufacturing-Execution-Systeme (MES) in der Produktion sind daher kaum verzichtbar. Diese Systeme decken jedoch die Produktion nicht vollständig digital ab: Kann beispielsweise ein Fertigungsauftrag alternativ auf mehreren Maschinen eingeplant werden, muss der Planer dies entscheiden. Das System entwickelt auf Basis der vorhandenen Daten einen Fertigungsplan. Der Planer greift jedoch immer wieder ein, weil er Informationen hat, die dem System nicht vorliegen. Mit der Zeit entwickelt der Planer Präferenzen, sogenanntes implizites Wissen, über das nur er verfügt – nicht aber das Planungssystem.

Grenzen klassischer Systeme

Auch wenn ERP- und MES-Lösungen die Prozessintegration entlang von Wertschöpfungsketten und Fertigungsprozessen (horizontale und vertikale Datenintegration) immer weiter vorantreiben und so versuchen, implitzites Wissen zu verringern, stoßen klassische Planungssysteme oft an ihre Grenzen, denn manuelle Änderungen innerhalb der Fertigungsplanung werden außerhalb des Systems vorgenommen und haben damit keinen Einfluss auf die zukünftige Einplanung durch das Planungssystem.

Komplexe Systeme

Entscheidet also der Planer aus einem speziellen Grund, einen Auftrag auf eine andere Maschine zu legen, so muss er diese Änderung jedes Mal vornehmen, wenn bei zukünftigen Aufträgen die gleichen Gründe auftreten. Klassische Analysemethoden erkennen zwar durch die Auswertung historischer Daten die Änderung, nicht aber die Gründe für diese Entscheidung – ihre Systemlogik ist nicht dafür geeignet, die Entscheidung zu prognostizieren. Der Planer muss also in das Planungssystem eingreifen. Da ERP- und MES-Lösungen aber mit steigender Datenmenge und zunehmender Integration in weitere Unternehmensbereiche immer komplexer werden, kann der Planer diese Komplexität nur mit sehr hohem Aufwand nachvollziehen. Manuelle Eingriffe zur Änderung eines Fertigungsplans werden somit immer schwieriger und haben oft Auswirkungen auf Bereiche, die Fertigungsplaner und -steuerer nur aufwendig mitbetrachten können. An dieser Stelle kommt künstliche Intelligenz bzw. maschinelles Lernen ins Spiel.

Seiten: 1 2Auf einer Seite lesen

Becos GmbH
www.becos.de

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige