Predictive Maintenance and Quality

Predictive Maintenance and Quality

Kleiner Anfang,
große Wirkung

Bild: Cenit AG

Kaum eine Veranstaltung zu Industrie 4.0 kommt ohne den Verweis auf Predictive Maintenance aus. Zurecht, denn KI-basierte Vorhersagemodelle führen  zusammen mit der Auswertung von Maschinendaten in der Praxis zu oft deutlich besserer Produktionsqualität.


Oft beobachten Unternehmen die Entwicklung der Predictive-Maintenance-Lösungen mit Interesse, doch vor einer Einführung gibt es viele Fragen zu beantworten und Hürden zu überwinden. Und nicht zuletzt besteht Unsicherheit, ob die geeignete Expertise in der Belegschaft bereits vorhanden ist, um den Einsatz von künstlicher Intelligenz in die Praxis zu bringen.

Mehr Sensoren, mehr Daten

PMQ (Predictive Maintenance and Quality)-Visionen und Nutzendarstellungen basieren auf der Idee, dass alle Produktionsschritte und ihre Daten zentralisiert verarbeitet werden, um sich so einer selbststeuernden Produktion anzunähern. Diese Idee wird wiederum mit der Cloud assoziiert, da nur so die wachsenden Datenmengen bewältigt werden können. Das Wachstum liegt in der steigenden Anzahl von Sensoren in neuen Maschinen sowie in Sensornachrüstungen im Bestand begründet. Denn fast alle Maschinen extrahieren heute Daten und lassen sich durch zusätzliche Sensoren ergänzen.

Nutzen im Fokus

Ebenso muss das Zielbild einer IoT-Plattform hinterfragt werden, wenn man sich dem Thema PMQ widmet. Der Nutzen entsteht nicht durch die IT-technische Sammlung, Verwaltung und Speicherung von Maschinen- und Produktdaten. Er ist die Folge, wenn Ingenieure und Datenexperten Use-Case-basierte Modelle entwickeln und anwenden. Das Wissen über die Produktion und die Nutzung von prädiktiven Methoden sollte im Fokus stehen – nicht die Existenz einer IT-Plattform.

Seiten: 1 2 3Auf einer Seite lesen

Das könnte Sie auch Interessieren

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.

Bild: Benteler International AG
Bild: Benteler International AG
Produktionsfehler: KI findet die Nadel im Heuhaufen

Produktionsfehler: KI findet die Nadel im Heuhaufen

In der Qualitätsprüfung ist Zeit ein wichtiger Faktor: Wer Fehler rechtzeitig findet, kann sie effektiv und kostensparend beheben. Gemeinsam mit dem Fraunhofer IEM setzt der Automobilzulieferer Benteler dafür in der Warmumformung von Fahrzeugteilen auf Echtzeit-Sensordaten und Künstliche Intelligenz. Damit können Produktionsfehler schneller erkannt, behoben und zukünftig sogar vermieden werden.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.