KI-Systeme für Anwendungen in jeder Branche

KI-Systeme für Anwendungen in jeder Branche

Bild: ©Alexander Limbach/stock.adobe.com

Das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI GmbH) zählt zu den wichtigsten Forschungszentren für KI weltweit mit mehr als 1.000 Mitarbeitern aus mehr als 65 Nationen. Sie arbeiten zurzeit in rund 250 Forschungsprojekten, nahezu jeder Lebens- und Arbeitsbereich ist Gegenstand der Innovationsforschung. Die Wechselwirkung zwischen den Ergebnissen aus Wissenschaft und Forschung und der Praxiserfahrung von Herstellern von KI-Lösungen führt zu konkreten Anwendungen für den realen Einsatz, wie z.B. in der Automatisierung, Energie, Pharmazie und im Gesundheitswesen.

Gesundheitswesen: Mit KI schneller im Wettlauf gegen die Zeit

KI kann z.B. in der Patientenbehandlung Zeitvorteile bei Prävention, Diagnose und Therapie ermöglichen. Die Heilungschancen steigen mit dem Grad der Befundung wie sie z.B. Röntgenbilder, CTA, MRT oder Ultraschall liefern können. Zur Ergänzung der Diagnosen des medizinischen Personals sind KI-Anwendungen notwendig, die riesige Datenmengen in kurzer Zeit strukturieren und analysieren. Sie können Ergebnisse für die Beurteilung durch Ärzte in Sekunden liefern. KI-Systeme können dazu Daten aus Quellen wie bildgebende Verfahren, der Genomik und Proteomik verknüpfen und die Prävention sowie Therapie wesentlich unterstützen. Die Schnelligkeit unter Einhaltung einer Null-Fehlerquote ist bei epidemischen und metastasierenden Erkrankungen entscheidend für Diagnose, Therapie und Gesundung des Patienten.

Energiewirtschaft: Predictive Maintenance für punktgenaue Wartung

Die von KI unterstützte Produktion und Energieversorgung ermöglicht reibungslose Prozesse und die frühzeitige Abwehr von Störungen durch präventive Diagnosesysteme. KI-basierte Predictive-Maintenance-Strategien für Energieversorgung und Industrieautomation optimieren die Instandhaltung von Anlagen, erlauben die Fernsteuerung in Echtzeit und passen Wartungspläne den realen Gegebenheiten an. Machine und Deep Learning helfen durch Planungsalgorithmen, Abweichungen früh zu erkennen und Anomalien wie z.B. Unwuchten, Fluchtungsfehler oder Risse im Material von Turbinen und Kompressoren anzuzeigen. Durch die Datenanalyse der KI-Systeme werden Dysfunktionalitäten bereits in der Entstehung erkannt, noch bevor sie sich negativ auswirken. Sie tragen zur Vermeidung von Produktionsausfällen und potenziellen Gefahren in punkto Sicherheit von Systemen, Betrieb, Versorgung und Umwelt bei.

Seiten: 1 2 3Auf einer Seite lesen

KONTRON S&T AG
www.kontron.de

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige