Das nächste Level von MRK

Künstliche Intelligenz in der Qualitätssicherung

Das nächste Level von MRK

Bisweilen wird einem der Eindruck vermittelt, dass die Fertigung heute schon vollautomatisch abläuft – selbstgesteuert durch künstliche Intelligenz. Doch wird vermutlich auch im Zeitalter von intelligenten Maschinen in den meisten Produktionsumgebungen der Mensch seine zentrale Rolle behalten. Dabei lernen Maschinen von Menschen und Menschen von Maschinen. Eine Demo-Anwendung zeigt exemplarisch, wie maschinelles Lernen bei der Qualitätsprüfung im Zusammenspiel mit einem Roboter in der Fertigung funktioniert.
Ein wesentliches Merkmal des COVIQS-Demonstrators (Collaborative Visual Quality Services) von Capgemini ist, dass die Prüfung auf Basis von Bildverarbeitung und Apas-Roboter mobil ist, also ortsungebunden. So kann die Qualitätsprüfung flexibel, direkt an der Produktionslinie und damit interaktiv durchgeführt werden. Welche Hardware-Elemente dafür vor Ort – neben der Kamera – installiert sein müssen, kann frei konfiguriert werden. Ein wesentliches Element von maschinellem Lernen ist der sogenannte Konfidenzwert: Dieser Wert zwischen 0 und 1 gibt an, wie sicher sich ein System in seiner Aussage ist. In Anwendungsfall des Demonstrators ist dies die Angabe darüber, wie sicher ein Bildobjekt als richtig erkannt wurde. Das Verfahren steht im Gegensatz zu klassischen Prüfsystemen, die lediglich aussagen, ob eine Prüfung in Ordnung (IO) oder nicht in Ordnung (NIO) erfolgt ist. Warum aber ist der Konfidenzwert so wichtig und warum reicht die Aussage IO/NIO nicht aus? Maschinelles Lernen muss immer im Gesamtkontext gesehen und das Systemverhalten im Zusammenspiel mit den Mitarbeitern beachtet werden.

Nachhilfeunterricht für Maschinen

Systeme, die auf maschinellem Lernen basieren, sind immer nur so gut wie die Input-Daten, mit denen sie trainiert wurden. In genannten Fall sind das die Bilder, mit denen die Prüfanwendung gelernt hat. In der Praxis treten immer mal wieder Situationen auf, die nicht Teil der Trainingsmenge waren. Das kann z.B. eine Hand sein, die im Bildausschnitt auftaucht oder eine Produktvariante, die nicht in der Trainingsmenge vorhanden war. Das System antwortet in diesem Fall mit einem reduzierten Konfidenzwert. Es ist damit eine Aufforderung an den Experten, die Aussage des Systems zu verifizieren. Damit wird Transparenz in der Zusammenarbeit von Mensch und Maschine geschaffen.

Maschinelles Lernen per Handy verbessern

Die Demo-Anwendung startet den Verifikationszyklus, wenn der Konfidenzwert unter eine definierte Schwelle rutscht. Der Bediener erhält dann automatisch eine Mitteilung auf seinem mobilen Gerät, ohne zu den in der Produktion üblichen HMIs zu gehen. Er kann dort direkt die Systementscheidung anhand der Bildsituation prüfen. Im Bedarfsfall kann er die IO/NIO-Entscheidung des Systems überstimmen. Dieses Ergebnis wird anschließend an die Qualitätssicherung weitergeleitet. Dort trainiert man damit eine neue Version des Prüfsystems, das die geänderten Rahmenbedingungen berücksichtigt. Ähnlich wie ein erfahrener Mitarbeiter wird das System nun mit einer größeren Bandbreite von Umgebungseinflüssen korrekte Ergebnisse liefern.

Seiten: 1 2Auf einer Seite lesen

Capgemini // Capgemini Invent

Das könnte Sie auch Interessieren

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.

Bild: Benteler International AG
Bild: Benteler International AG
Produktionsfehler: KI findet die Nadel im Heuhaufen

Produktionsfehler: KI findet die Nadel im Heuhaufen

In der Qualitätsprüfung ist Zeit ein wichtiger Faktor: Wer Fehler rechtzeitig findet, kann sie effektiv und kostensparend beheben. Gemeinsam mit dem Fraunhofer IEM setzt der Automobilzulieferer Benteler dafür in der Warmumformung von Fahrzeugteilen auf Echtzeit-Sensordaten und Künstliche Intelligenz. Damit können Produktionsfehler schneller erkannt, behoben und zukünftig sogar vermieden werden.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.