Das nächste Level von MRK

Künstliche Intelligenz in der Qualitätssicherung

Das nächste Level von MRK

Bisweilen wird einem der Eindruck vermittelt, dass die Fertigung heute schon vollautomatisch abläuft – selbstgesteuert durch künstliche Intelligenz. Doch wird vermutlich auch im Zeitalter von intelligenten Maschinen in den meisten Produktionsumgebungen der Mensch seine zentrale Rolle behalten. Dabei lernen Maschinen von Menschen und Menschen von Maschinen. Eine Demo-Anwendung zeigt exemplarisch, wie maschinelles Lernen bei der Qualitätsprüfung im Zusammenspiel mit einem Roboter in der Fertigung funktioniert.
Ein wesentliches Merkmal des COVIQS-Demonstrators (Collaborative Visual Quality Services) von Capgemini ist, dass die Prüfung auf Basis von Bildverarbeitung und Apas-Roboter mobil ist, also ortsungebunden. So kann die Qualitätsprüfung flexibel, direkt an der Produktionslinie und damit interaktiv durchgeführt werden. Welche Hardware-Elemente dafür vor Ort – neben der Kamera – installiert sein müssen, kann frei konfiguriert werden. Ein wesentliches Element von maschinellem Lernen ist der sogenannte Konfidenzwert: Dieser Wert zwischen 0 und 1 gibt an, wie sicher sich ein System in seiner Aussage ist. In Anwendungsfall des Demonstrators ist dies die Angabe darüber, wie sicher ein Bildobjekt als richtig erkannt wurde. Das Verfahren steht im Gegensatz zu klassischen Prüfsystemen, die lediglich aussagen, ob eine Prüfung in Ordnung (IO) oder nicht in Ordnung (NIO) erfolgt ist. Warum aber ist der Konfidenzwert so wichtig und warum reicht die Aussage IO/NIO nicht aus? Maschinelles Lernen muss immer im Gesamtkontext gesehen und das Systemverhalten im Zusammenspiel mit den Mitarbeitern beachtet werden.

Nachhilfeunterricht für Maschinen

Systeme, die auf maschinellem Lernen basieren, sind immer nur so gut wie die Input-Daten, mit denen sie trainiert wurden. In genannten Fall sind das die Bilder, mit denen die Prüfanwendung gelernt hat. In der Praxis treten immer mal wieder Situationen auf, die nicht Teil der Trainingsmenge waren. Das kann z.B. eine Hand sein, die im Bildausschnitt auftaucht oder eine Produktvariante, die nicht in der Trainingsmenge vorhanden war. Das System antwortet in diesem Fall mit einem reduzierten Konfidenzwert. Es ist damit eine Aufforderung an den Experten, die Aussage des Systems zu verifizieren. Damit wird Transparenz in der Zusammenarbeit von Mensch und Maschine geschaffen.

Maschinelles Lernen per Handy verbessern

Die Demo-Anwendung startet den Verifikationszyklus, wenn der Konfidenzwert unter eine definierte Schwelle rutscht. Der Bediener erhält dann automatisch eine Mitteilung auf seinem mobilen Gerät, ohne zu den in der Produktion üblichen HMIs zu gehen. Er kann dort direkt die Systementscheidung anhand der Bildsituation prüfen. Im Bedarfsfall kann er die IO/NIO-Entscheidung des Systems überstimmen. Dieses Ergebnis wird anschließend an die Qualitätssicherung weitergeleitet. Dort trainiert man damit eine neue Version des Prüfsystems, das die geänderten Rahmenbedingungen berücksichtigt. Ähnlich wie ein erfahrener Mitarbeiter wird das System nun mit einer größeren Bandbreite von Umgebungseinflüssen korrekte Ergebnisse liefern.

Seiten: 1 2Auf einer Seite lesen

Capgemini // Capgemini Invent

Das könnte Sie auch Interessieren

Bild: Trumpf SE + Co. KG
Bild: Trumpf SE + Co. KG
Künstliche Intelligenz macht Fabriken clever

Künstliche Intelligenz macht Fabriken clever

Seit dem Siegeszug des Chatbots ChatGPT ist künstliche Intelligenz in aller Munde. Auch in der industriellen Produktionstechnik kommt KI mit großen Schritten voran. Lernende Maschinen machen die Fertigung effizienter. Wie funktioniert das genau? Das können Interessierte auf der EMO Hannover 2023 vom 18. bis 23. September erfahren. Die Weltleitmesse für Produktionstechnologie wird ihr Fachpublikum unter dem Claim ‚Innovate Manufacturing‘. mit frischen Ideen inspirieren und künstliche Intelligenz spielt dabei ihre Stärken aus.

Bild: Mitsubishi Electric Corporation, Japan
Bild: Mitsubishi Electric Corporation, Japan
KI-gestütztes Analysetool für moderne Produktionslinien

KI-gestütztes Analysetool für moderne Produktionslinien

Das Data-Science-Tool Melsoft MaiLab von Mitsubishi soll Unternehmen bei der Digitalisierung ihrer Fertigung und unterstützen und so deren Produktivität steigern. Die neue Lösung ist eine intuitive, bedienerzentrierte Plattform, die KI nutzt, um Abläufe automatisch zu verbessern. Sei es Abfallvermeidung durch geringere Ausschussmengen, weniger Stillstandszeiten durch vorbeugende Wartung oder Senkung des Energieverbrauchs durch Prozessoptimierung.

Bild: Fraunhofer IGD
Bild: Fraunhofer IGD
Software Arrange beschleunigt Absortierprozesse

Software Arrange beschleunigt Absortierprozesse

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.