Anomalien erkennen ohne Schlecht-Bilder

Industrielle Bildverarbeitung ist häufig integraler Bestandteil durchgängig automatisierter Wertschöpfungsketten. Dabei spielen KI-Verfahren wie Deep Learning eine wichtige Rolle. Die Anomaly-Detection-Technologie hilft, den Trainingsaufwand für die eingesetzten Algorithmen zu reduzieren.
Deep-Learning-Algorithmen nutzen sowohl Schlecht-Bilder als auch Gut-Bilder zur Fehlererkennung.
Deep-Learning-Algorithmen nutzen sowohl Schlecht-Bilder als auch Gut-Bilder zur Fehlererkennung.Bild: MVTec Software GmbH

Die industrielle Bildverarbeitung (Machine Vision) übernimmt im Automatisierungsumfeld von Produktionsunternehmen unterschiedliche Aufgaben: Beispielsweise lassen sich damit sehr unterschiedliche Objekte entlang der gesamten Prozesskette identifizieren, zuordnen und nachverfolgen. Die Erkennung kann dabei sowohl aufgrund äußerer Merkmale als auch über aufgedruckte Datacodes oder mittels OCR-Verfahren (Texterkennung) erfolgen. Darüber hinaus optimiert und automatisiert Machine Vision das Handling von Produkten und Bauteilen: Die Position von Werkstücken lässt sich so bestimmen, dass diese zur Bearbeitung ausgerichtet werden können. Zudem können Roboter und Cobots Objekte wahrnehmen und greifen. Und nicht zuletzt lässt sich die Kollaboration zwischen Menschen und Maschinen sicherer und effizienter gestalten. Denn durch kontinuierliche Überwachung der Abläufe werden gefährliche Situationen und Kollisionen zwischen den Beteiligten vermieden.

Defekte Teile finden

Auch bei der Automatisierung der Fehlerinspektion spielt die industrielle Bildverarbeitung eine Rolle. So vergleicht die Machine-Vision-Software anhand der aufgenommenen digitalen Bilddaten permanent den Ist- und Sollzustand der zu prüfenden Objekte und erkennt Anomalien. Dadurch lassen sich defekte Teile automatisiert aussortieren. Noch robuster funktioniert dieser Prozess mit KI-Technologien – insbesondere wenn Deep Learning zum Einsatz kommt, das auf Convolutional Neural Networks (CNNs) basiert. Die Integration solcher KI-Algorithmen in die Bildverarbeitungssoftware hebt die automatisierte Fehlererkennung auf eine neue Stufe.

Deep Learning

Mittels Deep Learning werden die von den Bildeinzugsgeräten aufgenommenen digitalen Bilddaten umfassend ausgewertet. Dabei lernt die Machine-Vision-Software im Rahmen eines Trainings, welche Eigenschaften typisch für eine bestimmte Objektklasse sind. So können die Bilddaten einer spezifischen Klasse zugeordnet werden. Dies ermöglicht die automatische Klassifizierung von Gegenständen und Fehlern. Zu beachten ist jedoch, dass der Deep-Learning-basierte Trainingsprozess eine durchdachte und gute Vorbereitung erfordert. Es muss zunächst eine große Menge an verwertbaren Bilddaten erzeugt und gesammelt werden. Im nächsten Schritt werden die Bilder gelabelt, also mit einem digitalen Etikett versehen. Dieses markiert eine spezifische Objekt- oder Fehlerklasse. Erst nach dem Labeling-Prozess kann das zugrundeliegende, neuronale Netz mit den jeweiligen Bildern trainiert werden. Der Labeling-Prozess ist dabei mit großem Aufwand verbunden. Denn je nach individueller Anwendung sind zwischen 150 und 300 Trainingsbilder pro Fehlertyp erforderlich. Wichtig ist, dass diese die Objekte mit den zu erkennenden Defekten in verschiedenen Erscheinungsformen zeigen – sogenannte ‚Schlecht-Bilder‘. Von diesen sind jedoch oft nicht genug vorhanden. Zudem sind die möglichen Fehlertypen in ihrer konkreten Erscheinungsform vorher meist nicht bekannt. Die Beschaffung und das Labeling solcher Bilder können also einen hohen Ressourceneinsatz erfordern, der oft nicht rentabel ist.

Anomaly Detection

Die Anomaly-Detection-Technologie erkennt jegliche Defekte - wie hier an einem Flaschenhals.
Die Anomaly-Detection-Technologie erkennt jegliche Defekte – wie hier an einem Flaschenhals.Bild: MVTec Software GmbH

Abhilfe kann die Anomaly-Detection-Technologie schaffen, die in die Machine-Vision-Standardsoftware MVTec integriert ist. Anomaly Detection benötigt für die Defekterkennung nur noch sogenannte ‚Gut-Bilder‘, also solche, die den jeweiligen Gegenstand in fehlerlosem Zustand zeigen. Diese lassen sich einfacher erzeugen als ‚Schlecht-Bilder‘, was Zeit und Kosten spart. Ein weiterer Vorteil: Die Daten müssen zudem nicht gelabelt werden und es sind deutlich weniger Bilder für das Training erforderlich. So genügen bereits 20 bis maximal 100 Bilder, um passable Erkennungsergebnisse zu ermöglichen. Die möglichen Fehler müssen zudem nicht im Vorfeld bekannt sein, da die Software-Algorithmen Abweichungen vom trainierten Soll-Zustand erkennen.

Seiten: 1 2Auf einer Seite lesen

Das könnte Sie auch Interessieren

Bild: Fraunhofer IGD
Bild: Fraunhofer IGD
Software Arrange beschleunigt Absortierprozesse

Software Arrange beschleunigt Absortierprozesse

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.

Bild: Benteler International AG
Bild: Benteler International AG
Produktionsfehler: KI findet die Nadel im Heuhaufen

Produktionsfehler: KI findet die Nadel im Heuhaufen

In der Qualitätsprüfung ist Zeit ein wichtiger Faktor: Wer Fehler rechtzeitig findet, kann sie effektiv und kostensparend beheben. Gemeinsam mit dem Fraunhofer IEM setzt der Automobilzulieferer Benteler dafür in der Warmumformung von Fahrzeugteilen auf Echtzeit-Sensordaten und Künstliche Intelligenz. Damit können Produktionsfehler schneller erkannt, behoben und zukünftig sogar vermieden werden.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.