KI-Anwendungsfälle von After Sales bis Zielgruppenselektion

In kaum einer anderen Branche lassen sich durch die Kombination neuer Technologien und vorhandener Daten so viele interessante Anwendungsfälle ableiten wie in der Produktion. Für künstliche Intelligenz etwa lassen sich Einsatzmöglichkeiten entlang der gesamten Wertschöpfungskette finden, von der ersten Produktidee bis hin zur Wartung.
Bild: ©Pugun & Photo Studio/stock.adobe.com

Ausgangspunkt für KI-Projekte sind stets Daten. Sie sind der Rohstoff. Durch verbaute Sensoren an Maschinen und Produkten entstehen im produzierenden Gewerbe permanent Daten. Als weitere Quellen kommen Datenströme zwischen Unternehmenseinheiten, Lieferanten und Kunden hinzu. Für die Unternehmen geht es darum, diese zu bündeln und verfügbar zu machen – unter Achtung aller Vorgaben zum Datenschutz.

Der Rohstoff für KI

Was KI exakt ist, ist letztlich nicht klar definiert. In diesem Zusammenhang wird KI daher pragmatisch als ein Teilgebiet der Informatik definiert, das sich mit der Abbildung intelligenten menschlichen Verhaltens durch IT befasst. Übertragen auf Anwendungsfälle bedeutet das, dass in KI-Systemen Modelle entstehen, die bestimmte Aufgaben selbstständig lösen. Dem Feld der KI lässt sich ein breites Set an Methoden, Verfahren und Technologien zuordnen.

Für die unten aufgeführten Anwendungsfälle sind insbesondere die Teilgebiete Machine Learning und Deep Learning relevant. Machine Learning ist die Fähigkeit, auf Basis von Daten ein Modell zu erlernen. Selbstlernende Algorithmen entwickeln dabei aus Trainingsdaten Regeln, anhand derer das System eigenständig in großen Datenmengen Muster identifiziert. Deep Learning ist eine Disziplin des Machine Learnings, die in sogenannten neuronalen Netzen mit mehreren, hintereinander geschalteten Schichten komplexere Zusammenhänge erkennt.

Diese Methode ist der Wegbereiter für KI-Verfahren wie der Bildkennung, die es Systemen erlaubt, ihre Umgebung zu beobachten. Auch für die Umwandlung gesprochener Worte und Sätze zu geschriebenem Text oder andersherum (Text-to-Voice / Voice-to-Text) sowie für die Algorithmus-basierte Textanalyse (Text-Mining) ist Deep Learning der Wegbereiter.

Wie sich diese Methoden und Verfahren von Unternehmen des produzierenden Gewerbes einsetzen lassen, zeigen die folgenden Anwendungsfälle. Der Fokus liegt auf den Unternehmensbereichen Forschung und Entwicklung (F&E), Produktion, Supply Chain Management (SCM) und Sales / After-Sales.

In der Forschung und Entwicklung

KI-Lösungen im Bereich F&E ermöglichen das datengetriebene Gestalten von Produkten. Mit KI ist es praktisch so, als schauten F&E-Experten den Kunden über die Schulter. Wann, wie oft und wie intensiv ein Kunde eine Maschine nutzt, verrät eine Auswertung der Einsatzdaten, die über Sensoren gewonnen werden. Bündelt ein Hersteller diese Daten, kann er mittels Machine Learning Nutzergruppen innerhalb der Kundschaft identifizieren und in die Produktentwicklung einfließen lassen. Beispiel Bohrmaschine: Viele Kunden nutzen diese nur selten und kurz, ein kleines Cluster hingegen lang und oft bei maximaler Leistung. Fließt diese Erkenntnis in die Produktentwicklung ein, könnte die neue Bohrmaschinen-Generation aus weniger leistungsstarken Bauteilen bestehen, ergänzt um eine leistungsstärkere Profi-Variante.

Seiten: 1 2 3Auf einer Seite lesen

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige