Wiederbeschaffungszeiten KI-basiert berechnen

Liebherr Aerospace setzt zur Produktionsplanung auf die Software Felios mit ihrem Machine-Learning-Modul. Im Vergleich zu früher fallen die Prognosen der Wiederbeschaffungszeit von Bauteilen bis zu 19-mal genauer aus.
Bild: Liebherr-Aerospace Lindenberg GmbH

Bei Liebherr-Aerospace arbeiten an den Standorten in Lindenberg und Friedrichshafen rund 5.000 Mitarbeiter. Das zum Liebherr-Konzern gehörende Unternehmen entwickelt, fertigt und betreut Luftmanagement-, Flugsteuerungs- und Betätigungssysteme, Fahrwerke sowie Getriebe und Elektronik. Optimierungsbedarf sah das Unternehmen bei der Planung seiner Wiederbeschaffungszeiten (WBZ) von Bauteilen für die rund 300.000 Artikel aus dem Angebotsspektrum. Die zuvor im ERP-System abgebildeten statischen Planungsdaten aus dem Materialstamm waren zu ungenau. „Die Schätzungen und die Ist-Werte für Lieferdauern sind bei uns – wie bei vielen anderen Unternehmen – nur selten identisch. Abweichungen zwischen kalkulierten und realen Zeiten führen zu einer niedrigen Maschinenauslastung, wenn die Materialien zu spät eintreffen“, erläutert Sebastian Ullmann, Leiter Organisation Produktionsplanung bei Liebherr-Aerospace Lindenberg. „Erfolgen die Lieferungen zu früh, hat das negative Auswirkungen, denn das verfügbare Kapital nimmt durch hohe Bestände ab. Wir wollten daher die Genauigkeit unserer Prozessplanung durch präzisere Prognosen der WBZ und der damit verbundenen Bestelltermine verbessern.“ Da das Unternehmen bereits in anderen Projekten mit dem Softwareanbieter Inform zusammengearbeitet hatte, sollte das Aachener IT-Haus auch bei diesem Problem unterstützen.

In Zusammenarbeit erstellt

Seit mehr als fünf Jahren betreibt Liebherr bereits die Produktionsplanungssoftware Felios. Zum Einsatz kommen Module für die Fertigungssteuerung, das strategische Engpassmanagement, die Schichtplanung, zur Kennzahlenerhebung und -visualisierung sowie für die Betriebs- und Maschinendatenerfassung. Jetzt ist das Modul für maschinelles Lernen hinzugekommen. Entwickelt wurde es unter Mitwirkung von Liebherr-Aerospace von Inform DataLab, einem eigenständigen Kompetenzbereich des Unternehmens mit dem Fokus auf Data Management, Data Analytics und Data Science. „Das Modul ist vollständig in Felios integriert“, sagt Jens Siebertz, Vice President bei Inform DataLab. „Mithilfe spezieller ML-Algorithmen kann nun auf Grundlage der vorhandenen Daten präzise vorhergesagt werden, wie lange die Lieferung eines benötigten Bauteils tatsächlich dauert.“ Durch eine Datenvalisierung hat sich gezeigt, dass die Differenz zwischen dem Planwert und dem Ist-Wert für das Lieferdatum bei fünf Tagen lag. Das mit Machine Learning errechnete Prognosedatum zeigte eine Abweichung von nur einem Tag. Anschließend erfolgte eine vierwöchige Datenvalidierung im Testbetrieb. Ausgewählt wurden Lieferanten, die große Mengen an Bauteilen regelmäßig liefern. „Wir waren mit der ML-Prognose der Wiederbeschaffungszeiten 19-mal genauer als mit der Prognose aus dem Artikelstamm“, so Ullmann.

Frühwarnsystem

Abgebildet werden die Daten in einem Dashboard, das als Frühwarnsystem fungiert: Der Einkaufsleiter kann für einen definierten Zeitraum geplante Bestellungen mit Felios prüfen lassen. Zeigen sich in der Prognose der Lieferdaten zu hohe Abweichungen gegenüber den Werten aus dem ERP-System, kann er dem zuständigen Sachbearbeiter über das Dashboard automatisiert ein Dokument mit Informationen zu dieser Bestellung per E-Mail zusenden, damit er den Lieferanten kontaktiert, um den Bestellstatus zu überprüfen.

Bild: Liebherr-Aerospace Lindenberg GmbH

Technik als Unterstützung

„Bei aller Begeisterung für Technologie und Künstliche Intelligenz ist uns sehr bewusst, wie wichtig die humane Intelligenz bei Entscheidungen ist – und bleibt“, betont Ullmann. „Technik ist eine wertvolle Unterstützung in der Entscheidungsfindung, vollständig automatisieren kann man dies aber nicht in jedem Fall. Deshalb brauchen wir die Möglichkeit, die Prognosedaten flexibel nutzen und vor allem immer nachvollziehen zu können.“

Seiten: 1 2Auf einer Seite lesen

Thematik: Technologie
Inform GmbH

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige