Schnelle Bedrohungserkennung

Selbstlernende KI-Appliance

Bild: Fortinet GmbH

Fortinet stellt FortiAI vor. Die On-Premises KI-Appliance nutzt selbstlernende tiefe neuronale Netze, um Sicherheitsanalysen durchzuführen und die Bedrohungsbeseitigung zu beschleunigen. Sie soll fortgeschrittene Bedrohungen innerhalb von Sekundenbruchteilen erkennen können. Der FortiAI Virtual Security Analyst entlastet Security-Mitarbeiter, indem er ihnen viele zeitaufwändige, manuelle Tätigkeiten abnimmt. Dadurch gewinnen sie laut Anbieter mehr Freiraum für wichtigere Aufgaben. Sobald die KI im Unternehmensnetzwerk installiert wird, lernt sie kontinuierlich dazu. FortiAI setzt Deep Learning ein, auch als tiefe neuronale Netze (Deep Neuronal Networks, DNN) bekannt. Diese imitieren Neuronen im menschlichen Gehirn. Die KI kann datenbasiert komplexe Entscheidungen treffen. Dafür führt sie wissenschaftliche Analysen der Bedrohungen durch, die sie im jeweiligen Unternehmensnetzwerk findet. Bedrohungen sollen in Echtzeit automatisiert identifiziert und klassifziert werden. Maßgeschneiderte Threat Intelligence wird bereitgestellt, um False Positives signifikant zu reduzieren. Das selbstlernende KI-Modell benötigt dabei keine Internetverbindung, um dazuzulernen und sich weiterzuentwickeln. Dadurch eignet es sich auch für den Einsatz in abgeschotteten Netzwerken, etwa in OT-Umgebungen, Regierungseinrichtungen und großen Unternehmen. Sie unterliegen häufig strengen Compliance- und/oder Sicherheitsrichtlinien, die die Anbindung ans Internet einschränken.

Das könnte Sie auch Interessieren

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.

Bild: Benteler International AG
Bild: Benteler International AG
Produktionsfehler: KI findet die Nadel im Heuhaufen

Produktionsfehler: KI findet die Nadel im Heuhaufen

In der Qualitätsprüfung ist Zeit ein wichtiger Faktor: Wer Fehler rechtzeitig findet, kann sie effektiv und kostensparend beheben. Gemeinsam mit dem Fraunhofer IEM setzt der Automobilzulieferer Benteler dafür in der Warmumformung von Fahrzeugteilen auf Echtzeit-Sensordaten und Künstliche Intelligenz. Damit können Produktionsfehler schneller erkannt, behoben und zukünftig sogar vermieden werden.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.