KI per Smartphone

Deep Learning zur Oberflächenprüfung von Metall und Kunststoff
Die KI-Software AI.See von Elunic wird häufig zur Prüfung von Oberflächen aus Metall und Kunststoff eingesetzt. Mit einem Starterkit und einem Smartphone können Anwender selbst einen ersten Eindruck einer KI-basierten Qualitätsprüfung gewinnen.
Für die Installation der KI-Software AI.See stehen Anwender-spezifische Komplettpakete mit Kamera, Beleuchtung und IPC zur Verfügung. Die Lernphase des KI-Systems erfolgt im laufenden Betrieb.
Für die Installation der KI-Software AI.See stehen Anwender-spezifische Komplettpakete mit Kamera, Beleuchtung und IPC zur Verfügung. Die Lernphase des KI-Systems erfolgt im laufenden Betrieb.Bild: Elunic AG

Ein Beispiel für den Einsatz von Deep Learning ist die Erkennung von Lunkern in Guss-, Spritzguss- oder Betonteilen. Diese kleinen, durch Schwindung bedingten Vertiefungen können in Größe, Form und Lage völlig unterschiedlich aussehen. Regelbasierte Systeme lassen sich deswegen nur schwer einsetzen. AI.See dagegen erfasst durch einen Lernvorgang das generelle Prinzip des Lunkers. Einmal trainiert, erkennt es die Fehler in Echtzeit. Das gleiche Prinzip gilt auch für Kratzer, Risse und Unebenheiten auf Metall- und Kunststoffteilen oder defekte Leiterbahnen auf Platinen.

Lernphase im laufenden Betrieb

Zur Installation stehen anwenderspezifische Komplettpakete zur Verfügung. Die Montage der Kamera erfolgt an einem flexiblen Arm, wobei die Kameraauflösung entsprechend der Prüfobjekte gewählt ist. Neben der Beleuchtung gehört auch eine Edge Computing Recheneinheit zum System. Die Datenmengen zur Weiterentwicklung der KI-basierten Erkennung befinden sich in der Cloud. Die Lernphase des KI-Systems erfolgt im laufenden Betrieb. Der Einstieg beginnt anhand von als fehlerhaft/fehlerfrei eingestuften Bildern. 1.000 Bilder sind ein guter Anfang. Abhängig von der Problemstellung ist aber auch mit 100 Bildern der Start der Qualitätsprüfung möglich. Die Software benötigt in der Anfangsphase Unterstützung durch einen Bediener, der Grenzfälle entsprechend zuordnet, wobei der Unterstützungsbedarf stetig geringer wird. Nach etwa zwei Monaten funktioniert die Fehlererkennung in der Regel sehr gut. Der Mitarbeiter muss nur noch vereinzelt eingreifen. Je mehr Fehlerbilder (>1.000) zu Projektbeginn vorliegen, desto kürzer ist die Lernphase. Schon bald muss der Mitarbeiter nur Fälle prüfen, bei dem die Software nicht eindeutig erkennt, ob ein Fehler vorliegt. Die Person markiert dann ggf. einen Fehler und erzeugt damit ein weiteres Trainingsbild. Auf diese Weise lernt die Software kontinuierlich weiter und wird immer besser. Durch Transfer Learning lässt sich die Trainingszeit der Software zudem weiter verkürzen. Hierbei werden ähnliche, anonymisierte Produktdaten anderer Anwendungen zur Erkennung von Fehlern genutzt. Schließlich sehen Kratzer, Verschmutzungen und Lunker oft ähnlich aus. Eine Besonderheit der Software liegt in der zeitlich unbefristeten Korrektur. Die Lernphase gilt nie als abgeschlossen. Stattdessen prüft der Mitarbeiter weiterhin Grenzfälle, die AI.See nicht selbst einordnen kann.

Starterkit mit Smartphone

Als Architektur setzt Elunic auf Edge Computing. Alle Berechnungsvorgänge, die schnelle Reaktionen erfordern, bearbeitet der vor Ort installierte Industrie-PC. Dazu gehören die Auswertung der Videos aus der laufenden Produktion und zugehörige Aktionen, wie Signalisierung und Ausschleusung von Produkten sowie das fortlaufende Training der neuronalen Netze. Aktuell wird die Cloud nur initial für die Machbarkeitsstudie genutzt, am Ende läuft die Inspektion – auch das Training – auf dem lokalen Server. Bei Bedarf können aber große Datenmengen für eine historische Analyse der Produktionsfehler in der Cloud gespeichert werden. Interessenten können die Software mit einem Starterkit selbst testen. Zum Kit gehört ein flexibler Arm, an dem allerdings ein Smartphone anstatt einer Kamera befestigt wird. Die Software im Smartphone wird zunächst mit einigen Gut-/Schlecht-Bildern aus der Anwendung gespeist. Dann beginnt die Software mit der Erkennung von Defekten und legt unklare Produktbilder dem Mitarbeiter zur Prüfung vor. Durch das Starterkit können die Qualitätsprüfer selbst einen ersten Eindruck einer KI-basierten Qualitätsprüfung gewinnen.

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige