Der Accelerated-Discovery-Ansatz

KI, Cloud und Quantenrechner als Turbo für Entdeckungen

Die Sprints zu Covid19-Impfstoffen zeigen den Leistungsdruck, unter dem die Technologieentwicklung steht. In kürzester Zeit sollen Forscher und Ingenieure Lösungen für die kritischen Probleme unserer Zeit finden. Der Accelerated-Discovery-Ansatz soll helfen, Forschungs- und Entwicklungsprozesse mit KI, Hybrid Cloud und schließlich Quantencomputern um das zehn- bis hundertfache des heute Möglichen zu beschleunigen.
Bild: IBM Research

Noch nie zuvor waren die Erwartungen an die Forschung so hoch, drängende Probleme schnell zu lösen. Es geht nicht mehr nur um theoretische Antworten, sondern auch darum, Entwicklungszeiten bis zur Einsatzfähigkeit von Produkten immer weiter zu reduzieren. Nicht nur Impfstoffe und Medikamente werden akut gebraucht, sondern auch Materialien, um andere Herausforderungen zu bewältigen. Deren Bandbreite reicht von künftigen Pandemien über den Klimawandel, Ressourcenknappheit, Mobilität bis zu einer sauberen und ungefährlichen Energieversorgung bei steigendem Bedarf. Und damit ist die Liste längst noch nicht komplett.

Forschen im Zeitraffer

Viele dieser Fragen dulden keinen Aufschub und auch keine Abstriche in der Qualität, insbesondere wenn es um unkalkulierbare Risiken geht, wie das im Pharmabereich der Fall sein kann. Die Quintessenz: Wissenschaftliches Arbeiten muss schneller werden, die vorgelegten Resultate müssen dennoch sicher sein – ein klassischer Zielkonflikt. Das Konzept Accelerated Discovery setzt hier an, indem es den wissenschaftlichen Arbeitsprozess technologiegetrieben deutlich beschleunigt. Teflon, Vaseline, Mikrowellen, Röntgenstrahlen oder Graphen, das als Werkstoff der Zukunft gehandelt wird, wurden alle durch Zufall entdeckt. Und nicht selten verging noch einige Zeit, bis deren Potenzial erkannt wurde. Bereits ab den 1950er Jahren sorgten Computer für eine Beschleunigung wissenschaftlicher Prozesse und machten Erfolge wie etwa die Mondlandung möglich. Heute machen Fortschritte auf verschiedenen Technologiefeldern die Modellierung und Simulation komplexer Moleküle mit Hilfe von künstlicher Intelligenz (KI) möglich. Big-Data-getriebene Wissenschaft kann die Phasen des Erkenntnisprozesses – Fragestellung, Recherche, Formulierung einer Hypothese, Experimente, um die Hypothese zu testen, Verifizierung oder Falsifizierung der Hypothese – schneller durchlaufen als je zuvor. Aber selbst mit Hochleistungscomputern ist der Forschungsprozess noch zu langsam. Nach wie vor dauert es Jahre und kostet Millionen, um beispielsweise ein neues Material mit bestimmten Eigenschaften zu entwickeln.

Bild: IBM Research

Material schneller entwickeln

Der Einsatz von KI in der Materialwissenschaft ist nicht neu. Doch die Art ihrer Nutzung verändert sich. Sie wird nicht mehr nur genutzt, um Eigenschaften eines bekannten Materials vorherzusagen, sondern um die gezielte Entwicklung neuer Materialien mit vorher definierten und erwünschten Eigenschaften zu ermöglichen. Die Unterstützung setzt schon bei der Prüfung der Literatur an. Jedes Jahr werden mehr als zwei Millionen Fachbeiträge in 30.000 wissenschaftlichen Publikationen veröffentlicht – der menschliche Leser benötigt aber ein bis zwei Minuten pro Seite. Nach der Recherche folgt ein iterativer Zyklus von Synthese, Charakterisierung und Tests, bis eine zufriedenstellende Verbindung gefunden ist. Der Cloud-basierte KI Service von IBM Research namens Deep Search erfasst hingegen 20 Seiten pro Sekunde. Auf der Suche nach einem neuen Fotosäure-Generator (PAG) ließen IBM-Forscher via Deep Search 6.000 Artikel und Patente durchsuchen. Erste Erkenntnis: Wichtige Eigenschaftsdaten für die vielversprechendsten Verbindungen fehlten in der Literatur fast völlig. Daher sollte eine KI-gestützte Simulation ein so genanntes generatives Modell erstellen und trainieren. Ein generatives Modell ist eine KI-Technologie, die, nachdem sie mit einem Datensatz trainiert wurde, automatisch neue Objekte mit Eigenschaften generiert, die den ursprünglichen Daten ähnlich sind.

Simulieren und Generieren

Die Forscher trainierten das Modell mit den vorhandenen PAG-Struktur- und Eigenschaftsdaten. Anschließend begann das System, neue PAG-Strukturen mit verbesserten Umwelteigenschaften bei gleichbleibend hoher Lichtempfindlichkeit zu entwerfen. Das Ergebnis: Das generative KI-Modell erzeugte etwa 2.000 potenzielle PAG-Kandidaten in fünf Stunden. Da auch die Bewertung dieser Vielzahl von Ergebnissen durch menschliche Experten viel Zeit in Anspruch nehmen würde, kam auch bei der Auswahl der vielversprechendsten Kandidaten KI zum Einsatz. Zudem half ein KI-basiertes Retrosynthese-Tool, den besten Weg zur Herstellung organischer Moleküle zu identifizieren. Am Ende stand ein in einem KI-gesteuerten, automatisierten Labor synthetisierter PAG, der die Anforderungen erfüllt. Das Beispiel zeigt, wie Technologie die Materialforschung beschleunigen kann, indem sie die Zeit für die Suche und Synthese eines neuen Moleküls von Jahren auf Monate reduziert. Übrigens: Die Gefahr, dass der Mensch dabei überflüssig wird, besteht nicht. Die KI durchsucht menschliches Expertenwissen und ist letztlich auf die Kreativität und Innovationsstärke ihrer menschlichen Nutzer angewiesen.

Seiten: 1 2Auf einer Seite lesen

Thematik: Technologie
IBM Deutschland GmbH

Das könnte Sie auch Interessieren

Bild: Fraunhofer IGD
Bild: Fraunhofer IGD
Software Arrange beschleunigt Absortierprozesse

Software Arrange beschleunigt Absortierprozesse

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.

Bild: Benteler International AG
Bild: Benteler International AG
Produktionsfehler: KI findet die Nadel im Heuhaufen

Produktionsfehler: KI findet die Nadel im Heuhaufen

In der Qualitätsprüfung ist Zeit ein wichtiger Faktor: Wer Fehler rechtzeitig findet, kann sie effektiv und kostensparend beheben. Gemeinsam mit dem Fraunhofer IEM setzt der Automobilzulieferer Benteler dafür in der Warmumformung von Fahrzeugteilen auf Echtzeit-Sensordaten und Künstliche Intelligenz. Damit können Produktionsfehler schneller erkannt, behoben und zukünftig sogar vermieden werden.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.