Embedded-AI-Kameras

Neue Bedienkonzepte für Deep Learning auf Smart-Kameras
Für Embedded-AI-Kameras, also Kameras die es ermöglichen neuronale Netze direkt auf Smart Kameras auszuführen, gibt es mittlerweile unterschiedliche Bedienkonzepte, die zum Training der neuronalen Netze angeboten werden.

Das Inspektionssystem Gixel AI beinhaltet ist in der Lage, innerhalb weniger Minuten aus einer kleinen Anzahl an Beispielen eine Genauigkeit auf Produktionsniveau zu erreichen. Bild: Gixel GmbH

Hersteller, wie z.B. Flir, IDS, NET oder Basler haben seit kurzem einen neuen Kameratyp im Programm, der es ermöglicht, neuronale Netze direkt auf einer intelligenten Kamera auszuführen. Damit das neuronale Netz trainiert werden kann, ist ein Datensatz nötig. Das Bildverarbeitungssystem hingegen wird klassisch programmiert. Dieser Übergang vom Programmieren zum Lernen stellt den Anwender aber bei der Bedienung vor neue Herausforderungen. Wie umfangreich muss der Datensatz sein, damit die relevanten Informationen enthalten sind? Was ist zu tun, wenn 2% Fehlklassifikation noch (viel) zu hoch sind? Wie kann ich die Robustheit erhöhen, damit das System auch bei Störeinflüssen bei voller Leistungsfähigkeit funktioniert? Wie kann auf geänderte Aufgabenstellungen flexibel reagiert werden? Nicht alle, am Markt verfügbaren Konzepte geben darauf eine Antwort und bieten umsetzbare Lösungen zu diesen Fragen.

Machine Vision as a Service

Folgende Konzepte, bzw. Lösungsvarianten werden derzeit angeboten:

a) Bildverarbeitungsbibliothek mit Deep-Learning-Funktionalität
b) Cloud Workflow: Daten hoch- und neuronales Netz herunterladen
c) Dienstleistung durch externe Experten
d) Machine Vision as a Service

Technisch betrachtet ist der Cloud Workflow die online Version der Bildverarbeitungsbibliothek mit Deep-Learning-Funktionalität. Ziel ist es hier, einem unerfahrenen Nutzer die Möglichkeit zu geben, mit möglichst wenigen Bilddaten ein neuronales Netz zu trainieren. Weil aber in einem kleinen Datensatz nicht alle notwendigen Informationen enthalten sind, wird mit einem technischen Trick gearbeitet, dem sogenannten Transfer Learning. Hierbei wird ein vorhandenes neuronales Netz auf eine neue Aufgabenstellung transferiert. Dazu wird typischer Weise lediglich die letzte vollvernetzte Schicht neu gelernt. Dafür sind nur wenige Minuten Trainingszeit notwendig und Datensätzen mit nur 100 Bildern können ausreichend sein. Nachteilig ist die erzielbaren Klassifikationsleistungen. Zum einen stehen dem Training aufgrund des kleinen Datenumfangs nur wenige Informationen zur Verfügung, zum anderen sind die ersten Schichten des neuronalen Netzes, die für die Informationsextraktion zuständig sind, nicht auf die neue Aufgabenstellung optimiert. Interessanter Weise stellen die Hersteller von Embedded-AI-Kameras einen entsprechenden Workflow zur Verfügung, teilweise auch als Cloudlösung, was aber die angesprochenen Probleme nicht löst.

Möchte man die Klassifikationsgüte oder Robustheit weiter steigern, lohnt es sich auf Expertenwissen zurück zu greifen. Technisch ist es das Ziel, ein neuronales Netz von Grund auf neu zu lernen. Wird dazu ein externer Dienstleister beauftragt, ist man im Projektgeschäft mit all seinen Vor- und Nachteilen (Reaktionszeit auf Änderungen, Mehrkosten…) konfrontiert. Das Fraunhofer Spin-Off Gixel bietet dagegen mit Machine Vision as a Service eine Alternative. Hierbei werden nicht nur die Daten in eine Cloud geladen, sondern die Embedded-Kamera selbst ist mit der Cloud verbunden. Dadurch wird auch die Erstellung des Datensatzes als Dienstleistung übernommen und entsprechend große Datensätze aufgebaut. Die externe Dienstleistung ist somit in einem Standardprodukt gekapselt und kann on Demand genutzt werden. Das Inspektionssystem Gixel AI besteht aus einem vorkonfiguriertem IPC optimiert für die Inferenz komplexer neuronaler Netze. Dieser wird vorkonfiguriert mit Touchscreen geliefert und lernt in wenigen Minuten die Klassifikationsaufgaben ein. Das Gixel AI Team übernimmt den weiteren Lernvorgang über das Internet. Während dem Einlernen vergehen typischer Weise vier Sekunden zwischen Bildaufnahme und Klassifikationsergebnis. Danach liegt die Klassifikationsgüte meist bereits auf Produktionsniveau. Ist der Lernvorgang abgeschlossen, kann die Verbindung zum Internet getrennt werden. Nachlernen durch erneute Anbindung an den Server ist jederzeit möglich.

Gixel AI kann entweder als Komplettlösung mit einem vorkonfigurierten IPC genutzt werden oder mit einer Embedded-AI-Kamera, welche temporär zum Einlernen mittels einer zusätzlichen Hardware mit der Gixel-Cloud verbunden wird. Als Alleinstellungsmerkmal steht das System bereits während der Einlernphase produktiv zur Verfügung. Dazu wird das Prüfergebnis während dem Einlernen in Echtzeit mit einer typischen Latenz von vier Sekunden in der Cloud berechnet. Der Anwender muss für Änderungen oder Neuerstellung einer Prüfaufgabe nur wenige Minuten lang Beispielbilder klassifizieren. Ist der Datensatz für die Aufgabenstellung ausreichend groß, wird das trainierte Neuronale Netz auf die Embedded-AI-Kamera geladen. Nun sind herstellerabhängig sehr hohe Frame-Raten möglich und eine Internetverbindung nicht mehr notwendig.

Fazit

Deep Learning ermöglicht bessere Bildverarbeitung und weniger Fehlklassifikationen, aber die Bedienbarkeit wurde bisher in der Praxis nicht gelöst. Machine Vision as a Service bietet hier einen neuartigen Ansatz, schnell und intuitive auf Prozessänderungen zu reagieren. Dadurch werden Embedded-AI-Kameras in der Anwendung beherrschbar und die Leistungsfähigkeit der Deep-Learning-Technologie steht jedem zur Verfügung.

Gixel GmbH
www.baslerweb.com

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige