Eine neue Dimension der KI-basierten Fehlererkennung

KI-Verfahren sorgen für exzellente Erkennungsergebnisse bei der automatisierten Fehlerinspektion. Mit der Deep-Learning-basierten Technologie Anomaly Detection, die Bestandteil der Halcon Software von MVTec ist, können Unternehmen die Inspektionsprozesse jetzt deutlich vereinfachen und effizienter gestalten.
Bild 1 | Anomaly Detection vereinfacht die Deep-Learning-basierte, automatisierte Fehlerinspektion, da für die Defekterkennung nur noch Gut-Bilder erforderlich sind, also Bilder, die das entsprechende Objekt in fehlerlosem Zustand zeigen.
Bild 1 | Anomaly Detection vereinfacht die Deep-Learning-basierte, automatisierte Fehlerinspektion, da für die Defekterkennung nur noch Gut-Bilder erforderlich sind, also Bilder, die das entsprechende Objekt in fehlerlosem Zustand zeigen.Bild: iStock; Savas Keskiner, www.istavrit.biz

Ob auf Embedded-Geräten oder auf klassischen Industrie-PCs – immer öfter fließen KI-Verfahren in Machine-Vision-Applikationen ein. Eine wichtige Rolle spielt dabei Deep Learning. Mithilfe dieser KI-Technologie lassen sich aufgenommene, digitale Bilddaten umfassend analysieren. Die Vision-Software lernt dabei im Rahmen eines Trainings die für eine bestimmte Objektklasse typischen Eigenschaften und kann dadurch die Gegenstände exakt klassifizieren und besser erkennen. Dies gilt nicht nur für die Identifikation von Objekten an sich, sondern auch für die zielsichere Entdeckung und Lokalisierung von Defekten verschiedenster Ausprägung. Das hierfür erforderliche Training muss jedoch gut vorbereitet werden. Dies beginnt mit der Erzeugung und Sammlung einer großen Anzahl von validen Bilddaten. Diese müssen gelabelt, also mit einem digitalen Etikett versehen werden. Das Label steht jeweils für eine ganz spezifische Objekt- oder Fehlerklasse. Erst im Anschluss kann das zugrundeliegende, neuronale Netz mit den einzelnen Bildern trainiert werden.

Labeling verursacht großen Aufwand

Der Labeling-Prozess gestaltet sich extrem aufwändig: Abhängig von der individuellen Anwendung werden zwischen 150 und 300 Trainingsbilder pro Fehlertyp benötigt. Darauf müssen die jeweiligen Objekte mit den zu erkennenden Defekten in verschiedenen Erscheinungsformen zu sehen sein (Schlecht-Bilder). Die meisten Unternehmen verfügen jedoch nicht über eine so große Anzahl entsprechender Bilder. Erschwerend kommt hinzu, dass in industriellen Fertigungsprozessen quer durch alle Branchen Fehler auftreten, die aufgrund ihrer Heterogenität und ihrer vielfältigen Ausprägungen im Vorfeld nicht bekannt sind: In der Backwarenindustrie beispielsweise müssen Brötchen hinsichtlich Form und Aussehen bestimmte Normen einhalten. Dabei ist eine Vielzahl von Verformungen denkbar, welche eine Abweichung vom Sollzustand begründen. Ein anderes Beispiel stammt aus der Keksproduktion: Hier muss der Schokoladenüberzug exakt den Vorgaben entsprechen. Wird die Glasur unregelmäßig oder in zu geringer Menge aufgetragen, müssen die Kekse als Ausschuss aussortiert werden. Auch bei der Abfüllung von Getränken sind verschiedenste Defekte möglich. Schäden am Flaschenhals wie kleinste Sprünge, Kerben oder Risse sind mit bloßem Auge oft kaum erkennbar, machen das Gefäß aber unbrauchbar. In der Elektronikfertigung können vielfältigste Fehler auftreten, wie z.B. Dellen, Kratzer und sonstige Anomalien an Platinen, Leiterplatten oder sonstigen Komponenten. Die Bandbreite an möglichen Fehlern lässt sich also in ihrer konkreten Erscheinungsform vor dem Produktionsprozess nicht abschätzen. Aus diesen Gründen können die Beschaffung und das Labeling der für das Training benötigten Schlecht-Bilder einen unverhältnismäßig hohen Aufwand bedeuten, der für Unternehmen meist nicht rentabel ist. Um diese Herausforderung zu meistern, hat MVTec die Technologie Anomaly Detection entwickelt, die erstmals mit der Halcon Version 19.11 eingeführt und seitdem weiterentwickelt wurde.

Bild 2 | Im Rahmen der Deep-Learning-basierten Defekterkennung lassen sich sowohl Schlecht-Bilder als auch Gut-Bilder nutzen.
Bild 2 | Im Rahmen der Deep-Learning-basierten Defekterkennung lassen sich sowohl Schlecht-Bilder als auch Gut-Bilder nutzen.Bild: MVTec Software GmbH

Gut-Bilder zur Defekterkennung

Anomaly Detection überzeugt mit drei Vorteilen und vereinfacht den Prozess der Deep-Learning-basierten, automatisierten Fehlerinspektion: Erstens sind für die Defekterkennung nur noch Gut-Bilder erforderlich, also Bilder, die das entsprechende Objekt in fehlerlosem Zustand zeigen. Diese lassen sich mit deutlich weniger Aufwand generieren als Schlecht-Bilder. Der zweite Vorteil besteht darin, dass der komplette Labeling-Prozess entfällt. Da auf den Bildern keine Fehler mehr zu erkennen sind, muss auch nichts gelabelt werden. Der dritte Vorteil: Das Training erfordert deutlich weniger Bilder, als dies bei regulären, KI-basierten Inspektionsverfahren der Fall ist. So reichen bereits 20 bis maximal 100 Bilder aus, um akzeptable Erkennungsraten zu erzielen. So lassen sich durch Anomaly Detection Defekte aufdecken, die im Vorfeld nicht bekannt waren, denn die Software-Algorithmen sind in der Lage, sämtliche Abweichungen vom trainierten Soll-Zustand verlässlich zu erkennen.

Trainieren in wenigen Sekunden

Für noch zuverlässigere Erkennungsergebnisse sorgt die sogenannte Anomaly Map. Diese erzeugt die Software im Anschluss an das Training im Zuge der Inferenz, also während der Ausführung des Prüfschrittes. Auf der Map werden anhand eines Grauwerts spezielle Bereiche visualisiert, die mit hoher Wahrscheinlichkeit eine Anomalie aufweisen. Durch die Segmentierung können Fehler pixelgenau identifiziert, lokalisiert und deren Größe bestimmt werden. Durch die kontinuierliche Weiterentwicklung hat MVTec den Rahmen dessen, was mit Anomaly Detection möglich ist, seit dem initialen Release deutlich erweitert. Das Trainieren eines neuen Netzes ist jetzt meist in wenigen Sekunden abgeschlossen, so dass Benutzer viele Iterationen zur Feinabstimmung ihrer Anwendung durchführen können, ohne viel Zeit zu verlieren. Die ebenfalls beschleunigte Inferenz, kombiniert mit einem geringeren Speicherbedarf trainierter Netze, ermöglicht darüber hinaus weitere Einsatzmöglichkeiten auf Embedded-Geräten.

Thematik: Technologie
MVTec Software GmbH

Das könnte Sie auch Interessieren

Bild: Fraunhofer IEM
Bild: Fraunhofer IEM
Effiziente Produktionsplanung: KI reduziert Aufwand bei Schulte Kartonagen um 25%

Effiziente Produktionsplanung: KI reduziert Aufwand bei Schulte Kartonagen um 25%

Welcher Liefertermin steht wann an? Wie aufwändig muss die Maschine umgerüstet werden? Ist das benötigte Material bereits geliefert? Um die Reihenfolge verschiedener Kundenaufträge optimal zu planen, müssen Produktionsplaner:innen eine Vielzahl von Faktoren kennen und einschätzen. Bei Schulte Kartonagen hat ab sofort ein intelligenter KI-Assistent alle Faktoren im Blick – und macht Vorschläge für die effiziente Planung der Produktion. Gefördert wurde die Zusammenarbeit mit dem Fraunhofer IEM und den Universitäten Paderborn und Bielefeld im it’s OWL-Projekt ARISE.

Bild: schoesslers GmbH
Bild: schoesslers GmbH
appliedAI Institute for Europe launcht kostenlosen KI-Onlinekurs

appliedAI Institute for Europe launcht kostenlosen KI-Onlinekurs

Das gemeinnützige appliedAI Institute for Europe stellt den kostenfreien Online-Kurs ‚AI Essentials‘ zur Verfügung, der es Interessierten ermöglicht, in die Welt der Künstlichen Intelligenz einzusteigen. Konzepte wie maschinelles Lernen und Deep-Learning sowie deren Anwendungsmöglichkeiten und Auswirkungen auf unser Leben und unsere Wirtschaft sind Teile der umfassenden Einführung.

Bild: Trumpf SE + Co. KG
Bild: Trumpf SE + Co. KG
Künstliche Intelligenz macht Fabriken clever

Künstliche Intelligenz macht Fabriken clever

Seit dem Siegeszug des Chatbots ChatGPT ist künstliche Intelligenz in aller Munde. Auch in der industriellen Produktionstechnik kommt KI mit großen Schritten voran. Lernende Maschinen machen die Fertigung effizienter. Wie funktioniert das genau? Das können Interessierte auf der EMO Hannover 2023 vom 18. bis 23. September erfahren. Die Weltleitmesse für Produktionstechnologie wird ihr Fachpublikum unter dem Claim ‚Innovate Manufacturing‘. mit frischen Ideen inspirieren und künstliche Intelligenz spielt dabei ihre Stärken aus.

Bild: Mitsubishi Electric Corporation, Japan
Bild: Mitsubishi Electric Corporation, Japan
KI-gestütztes Analysetool für moderne Produktionslinien

KI-gestütztes Analysetool für moderne Produktionslinien

Das Data-Science-Tool Melsoft MaiLab von Mitsubishi soll Unternehmen bei der Digitalisierung ihrer Fertigung und unterstützen und so deren Produktivität steigern. Die neue Lösung ist eine intuitive, bedienerzentrierte Plattform, die KI nutzt, um Abläufe automatisch zu verbessern. Sei es Abfallvermeidung durch geringere Ausschussmengen, weniger Stillstandszeiten durch vorbeugende Wartung oder Senkung des Energieverbrauchs durch Prozessoptimierung.

Bild: Fraunhofer IGD
Bild: Fraunhofer IGD
Software Arrange beschleunigt Absortierprozesse

Software Arrange beschleunigt Absortierprozesse

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.