Artificial Intelligence of Things

Edge-Hardware für jede Phase des KI-Projekts

Viele KI-Anwendungen sollen Entscheidungen 'on Edge' treffen. Die Modelle dafür werden zwar noch in der Cloud trainiert, Datenerfassung und Interferenz sind aber problemlos vor Ort möglich. Dabei stellt jede Phase der KI-Implementierung andere Anforderungen an die Edge-Hardware.
Drei Phasen beim Aufbau einer KI/IoT-Anwendung
Drei Phasen beim Aufbau einer KI/IoT-AnwendungBild: Moxa Europe GmbH

Die Sensoren und Geräte etwa einer großen Ölraffinerie produzieren rund ein Terabyte Rohdaten pro Tag. Eine sofortige Rücksendung all dieser Rohdaten zur Speicherung oder Verarbeitung an eine öffentliche Cloud oder einen privaten Server würde beträchtliche Ressourcen an Bandbreite, Verfügbarkeit und Stromverbrauch erfordern. Gerade in hochgradig verteilten Anlagen ist es gar unmöglich, solche Datenmengen an einen zentralen Server zu senden, bereits wegen der Latenzzeiten bei der Datenübertragung und -analyse. Um diese Latenzzeiten zu verkürzen, die Kosten für die Datenkommunikation und -speicherung zu senken und die Netzwerkverfügbarkeit zu erhöhen, werden bei IIoT-Anwendungen zunehmend KI- und Machine-Learning-Fähigkeiten auf die Edge-Ebene des Netzwerks verlagert, was eine größere Vorverarbeitungsleistung direkt vor Ort erlaubt. Die Fortschritte bei der Verarbeitungsleistung von Edge-Computern machen das möglich.

Der passende Edge-Computer

Um eine KI in die IIoT-Anwendungen zu integrieren, muss das Training der Modelle weiterhin in der Cloud stattfinden. Doch letztlich müssen die trainierten Interferenz-Modelle im Feld eingesetzt werden. Mit Edge-Computing kann das Interferenz über die KI im Wesentlichen vor Ort durchgeführt werden, anstatt Rohdaten zur Verarbeitung und Analyse an die Cloud zu senden. Dafür muss eine zuverlässige Hardwareplattform auf Edge-Niveau bereit stehen, bei deren Auswahl folgende Faktoren eine wichtige Rolle spielen: die Verarbeitungsanforderungen für verschiedene Phasen der KI-Implementierung, die Edge-Computing-Ebenen, Entwicklungstools und die Umgebungsbedingungen.

Phasen der Implementierung

Da jede der drei nachfolgenden Phasen des Aufbaus einer KI-Edge-Computing-Anwendung unterschiedliche Algorithmen zur Ausführung verschiedener Aufgaben verwendet, gelten in jeder Phase eigene Verarbeitungsanforderungen.

Datenerfassung – Ziel dieser Phase ist es, große Mengen an Informationen zu sammeln, um das KI-Modell zu trainieren. Unverarbeitete Rohdaten allein sind jedoch nicht hilfreich, da die Informationen Dubletten, Fehler und Ausreißer enthalten könnten. Die Vorverarbeitung der erfassten Daten in der Anfangsphase zur Identifizierung von Mustern, Ausreißern und fehlenden Informationen ermöglicht außerdem das Korrigieren von Fehlern und systematischen Verzerrungen. Je nach Komplexität der erfassten Daten basieren die bei der Datenerfassung typischerweise verwendeten Computerplattformen meist auf Prozessoren der Serien Arm Cortex oder Intel Atom/Core. Im Allgemeinen sind die E/A- und CPU-Spezifikationen (und nicht die der GPU) wichtiger für die Durchführung von Datenerfassungsaufgaben.

Training – KI-Modelle müssen auf modernen neuronalen Netzen und ressourcenintensiven Machine-Learning- oder Deep-Learning-Algorithmen trainiert werden, die leistungsfähigere Verarbeitungsfunktionen etwa von GPUs erfordern. Deren Fähigkeiten bei der Parallelverarbeitung helfen, große Mengen von erfassten und vorverarbeiteten Trainingsdaten zu analysieren. Das Training eines KI-Modells beinhaltet die Auswahl eines Machine-Learning-Modells und dessen Training anhand der erfassten und vorverarbeiteten Daten. Während dieses Prozesses müssen auch die Parameter bewertet und entsprechend angepasst werden. Es stehen zahlreiche Trainingsmodelle und Tools zur Auswahl, darunter auch Deep-Learning-Entwicklungs-Frameworks nach Industriestandards wie PyTorch, TensorFlow und Caffe. Das Training wird üblicherweise auf dafür vorgesehenen KI-Trainingsmaschinen oder Cloud-Computing-Diensten wie den AWS Deep Learning AMIs, Amazon SageMaker Autopilot, Google Cloud AI oder Azure Machine Learning durchgeführt.

Interferenz – In der letzten Phase wird das trainierte KI-Modell auf dem Edge-Computer implementiert, damit es Schlussfolgerungen und Vorhersagen auf der Grundlage neu erfasster und vorverarbeiteter Daten treffen kann. Da die Inferencing-Phase im Allgemeinen weniger Datenverarbeitungsressourcen verbraucht als das Training, kann eine CPU oder ein leichter Beschleuniger für die betreffende AIoT-Anwendung reichen. Dennoch wird ein Konvertierungstool benötigt, um das trainierte Modell so umzuwandeln, dass es auf speziellen Edge-Prozessoren/Beschleunigern ausgeführt werden kann, etwa Intel OpenVino oder Nvidia Cuda. Interferenz umfasst auch mehrere verschiedene Edge-Computing-Ebenen und -Anforderungen, auf die im folgenden Abschnitt eingegangen wird.

Edge-Computing-Ebenen

Obwohl die KI immer noch hauptsächlich in der Cloud oder auf lokalen Servern traininert wird, finden die Datenerfassung und das Inferencing notwendigerweise am Netzwerk-Rand statt. Da das Inferencing die Phase ist, in der das trainierte KI-Modell die meiste Arbeit leistet, um die Anwendungsziele zu erreichen – also Entscheidungen zu treffen oder Aktionen auf der Grundlage neu erfasster Felddaten durchzuführen – muss zur Auswahl des passenden Prozessors festgelegt werden, welche der folgenden Edge-Computing-Ebenen benötigt werden:

Seiten: 1 2 3Auf einer Seite lesen

Thematik: Technologie
Moxa Europe GmbH

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige