Der alte Kampf mit neuen Waffen

Künstliche Intelligenz und IT-Sicherheit

Der alte Kampf mit neuen Waffen

Bild: ©Gorodenkoff/stock.adobe.com

Der einzige Trost beim Thema künstliche Intelligenz und Cybersicherheit? Dass auch die Angreifer nicht verstehen, wie die technologische Black Box KI genau funktioniert. Steve Rymell, Technikchef bei Airbus CyberSecurity, berichtet über die Notwendigkeit, künstliche Intelligenz auf dem Feld der IT-Sicherheit im Auge zu behalten – ohne ihr freilich einen Sonderstatus zuzuweisen.


Eines der auffälligsten Probleme der Cybersicherheitsbranche ist, dass Angreifer oft in der Lage sind, Verteidigern scheinbar mühelos einen Schritt voraus zu sein. Die grundsätzlichen Ursachen sind hier meist technischer Natur. Bestes Beispiel sind Software-Schwachstellen, die Cyberkriminelle in der Regel vor Anbietern und ihren Kunden aufdecken. Gegen dieses sogenannte Zero-Day-Phänomen bei vielen bekannten Cyberattacken sind selbst Sicherheitsexperten nahezu machtlos. Zudem machen Unternehmen, die mit der Komplexität neuer Technologien zu kämpfen haben, Fehler und lassen unbeabsichtigt gefährdete Ports und Services ungeschützt. Ein besonders drastisches Beispiel dafür sind Tools und Infrastrukturen, die Organisationen eigentlich dabei helfen sollten, sich zu verteidigen (z.B. Shodan, aber auch zahlreiche Pen-Test-Tools), mittlerweile aber genauso von Angreifern, die in Netzwerke eindringen, gegen Unternehmen eingesetzt werden können. Hinzu kommt, dass moderne Malware derart vielseitig auftreten kann, dass Angreifer fast unaufhaltsam erscheinen. So betonen selbst Sicherheitsanbieter zunehmend die Notwendigkeit, Angriffe nicht zu blockieren, sondern stattdessen so schnell wie möglich auf diese zu reagieren.

Der KI-Gegenangriff

Vor einigen Jahren gingen einige, meist in den USA ansässige, Startups mit einer mutigen neuen Idee zu einer Art Gegenangriff über – Machine-Learning-Security durch Algorithmen. Machine Learning (ML) wird hauptsächlich verwendet, um Daten zu kategorisieren, die mit Datenklassen übereinstimmen, die für das Training des ML-Algorithmus verwendet werden. Die Ansprüche an die KI im Cyberspace ist die Fähigkeit, Zero-Day-Malware oder Anomalien im Netzwerkverkehr zu erkennen. Dies ist ein Schritt weg von der Identifikation bereits bekannter Bedrohungen hin zum Versuch, das Unbekannte zu erkennen. Es handelt sich also um eine Weiterentwicklung der ML-Techniken, die es (in einigen Fällen) ermöglicht hat, die Raten von falsch-positiven und falsch-negativen Meldungen auf ein Niveau zu reduzieren, auf dem die Technologie nützlich sein kann. Große Unternehmen scannen möglicherweise Tausende von Dateien pro Tag, sodass selbst eine False-Positive-Rate von einigen Prozent in absoluten Zahlen ein Problem darstellen würde. Im Zeitalter von Big Data kann diese Herangehensweise durchaus sinnvoll sein, die Idee wurde deshalb auch von verschiedenen Systemen zur Bekämpfung von Spam, Malware-Erkennung, Bedrohungsanalyse und -aufklärung sowie zur Automatisierung des Security Operations Centre (SoC) aufgegriffen, wo sie auch dem Fachkräftemangel entgegenwirkt.

Kaum jemand versteht die Black Box

Bei allen Fortschritten wird dieser Ansatz von manchen auch als ultimatives Beispiel für Technologie als Black Box bezeichnet, die niemand wirklich versteht. Der Großteil der KI basiert auf maschinellem Lernen, das im Wesentlichen eine statistische Technik ist, die Ereignisse oberhalb einer bestimmten Schwelle meldet. Bei unüberwachtem Lernen (d.h. das System aktualisiert sich ständig in Abhängigkeit von den bisherigen Ergebnissen) gibt es nicht einmal die Garantie, für die gleiche Eingabe das gleiche Ergebnis zweimal zu erhalten, es ist also nicht deterministisch. Daher ist es schwierig, einen Benchmark zu schaffen, die Ergebnisse sind als Beweis nicht zulässig. Stattdessen ist zur Überprüfung der Ergebnisse immer eine weitere Analyse erforderlich. Woher wissen wir, dass Machine Learning in der Lage ist, neue und unbekannte Angriffstypen zu erkennen, die herkömmliche Systeme nicht erkennen? Weil die Produktbroschüre dies sagt? Wie bereits erwähnt, garantiert das Training eines ML-Systems mit bekannter Malware nicht, dass es neue auch erkennt. Tatsächlich wird es wahrscheinlich nur routinemäßige Varianten der Malware erkennen, für die das System geschult wurde. Einige ML-Systeme sind daher kaum besser als Heuristiken oder Analytic Use Cases, die als Skripte für bekannte bösartige Aktivitäten entwickelt wurden. ML sollte daher nur als eines der Werkzeuge in der Analysten-Toolbox und nicht als eine einzige magische Lösung verstanden werden. Tatsächlich können schlecht konstruierte Systeme mit hohen False-Positive-Raten die oft begrenzte Zeit von Analysten verschwenden. Und weiter: Was sollte Angreifer davon abhalten, das defensive ML mit einem noch besseren zu überlisten? Wenn dies auch nur in wenigen Fällen möglich wäre, stehen wir wieder komplett am Anfang. Das ist natürlich reine Spekulation, denn bisher konnte kein Einsatz von KI in einem Cyberangriff nachgewiesen werden. Unser Verständnis davon, wie es funktionieren könnte, basiert weitgehend auf akademischer Forschung wie IBMs Proof-of-Concept DeepLocker Malware Project.

Seiten: 1 2Auf einer Seite lesen

Airbus CyberSecurity
www.airbus-cyber-security.com

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige