Statusreport ‚Maschinelles Lernen‘

Statusreport ‚Maschinelles Lernen‘

Bild: MVTec Software GmbH

Die industrielle Bildverarbeitung (BV) in Deutschland blickt auf ein jahrzehntelanges Wachstum mit zuletzt 2,8Mrd.€ Umsatz im Jahr 2018 zurück. Immer häufiger besteht in der Industrie der Bedarf, die erzeugten Bilddaten automatisiert zu bewerten, sei es zur Prozess- und Qualitätskontrolle oder in der medizinischen Diagnostik. Mit dem neuen Statusreport ‚Maschinelles Lernen – Künstliche Intelligenz mit neuronalen Netzen in optischen Mess- und Prüfsystemen‘ will der VDI in das maschinelle Lernen für optische Mess- und Prüfsysteme einführen und die Potenziale des maschinellen Lernens vorstellen.


Die derzeitigen Technologietreiber für das maschinelle Lernen (ML) im Bereich der Bildverarbeitung sind vor allem die Automobiltechnik, die Kommunikations- und Unterhaltungselektronik (Smartphones), die Medizin sowie der Bereich der öffentlichen Sicherheit. Das maschinelle Lernen zeigt dabei Stärken in klassischen Bildverarbeitungsaufgaben wie Segmentierung, Objekterkennung und Klassifikation. KI-Lösungen mit neuronalen Netzten eignen sich insbesondere für Aufgaben, für die sich weniger leicht Regeln angeben lassen, wie die Erkennung von Anomalien (in Bildern oder Zeitreihen) sowie bei der Fusion oder Korrelation von verschiedenen Datenströmen.

Zentrales Forschungsfeld in der BV ist die Erklärbarkeit der Ergebnisse des ML. Häufig kann die Frage ‚Warum hat das System so entschieden?‘ noch nicht beantwortet werden, da viele Verfahren des ML keine Kennzahlen für die Zuverlässigkeit ihrer Ergebnisse liefern. Allerdings ist genau das die notwendige Voraussetzung, um die Akzeptanz bei Anwendern sicherzustellen – z.B. bei der Abnahme von Projektergebnissen, bei Zertifizierungen von Verfahren oder bei der Erstellung von Diagnosen in der Medizin. Es braucht geeignete Kennzahlen, die die Qualität des Ergebnisses einschätzen. Sie sind insbesondere dann wichtig, wenn aus einem Ergebnis sicherheitsrelevante Entscheidungen abgeleitet werden sollen. Die Publikation zeigt den momentanen Stand und versucht, künftige Entwicklungen abzuschätzen.

Universitäten, Forschungseinrichtungen und Industrieunternehmen bringen die Nutzung des ML und der KI mit viel Engagement voran. Insbesondere hinsichtlich der Datennutzung müssen allerdings geeignete Rahmenbedingungen geschaffen werden: Große Datenmengen müssen zuverlässig gesichert, zwischen Projektpartnern ausgetauscht und vor unberechtigtem Zugriff gesichert werden können. Die Verfügbarkeit von industriellen Daten und die Freiheit zur Nutzung der Daten werden in naher Zukunft eine wesentliche Grundlage der wirtschaftlichen Souveränität eines Wirtschaftsraums bilden. Notwendig sind daher klare Regelungen, welche Eigentums- oder Nutzungsrechte an solchen Daten bestehen, wo die Grenzen individueller Rechte an Daten liegen und welche Rechte an den Ergebnissen von Lernverfahren für KI und ML bestehen. Diese Regelungen müssen in einem europäischen Rahmen vereinbart sein.

Der vollständige Statusreport ‚Maschinelles Lernen – Künstliche Intelligenz mit neuronalen Netzen in optischen Mess- und Prüfsystemen‘ steht kostenfrei unter www.vdi.de/publikationen.

Thematik: Newsarchiv
|
www.vdi.de

Das könnte Sie auch Interessieren

Bild: Fraunhofer IGD
Bild: Fraunhofer IGD
Software Arrange beschleunigt Absortierprozesse

Software Arrange beschleunigt Absortierprozesse

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.

Bild: Benteler International AG
Bild: Benteler International AG
Produktionsfehler: KI findet die Nadel im Heuhaufen

Produktionsfehler: KI findet die Nadel im Heuhaufen

In der Qualitätsprüfung ist Zeit ein wichtiger Faktor: Wer Fehler rechtzeitig findet, kann sie effektiv und kostensparend beheben. Gemeinsam mit dem Fraunhofer IEM setzt der Automobilzulieferer Benteler dafür in der Warmumformung von Fahrzeugteilen auf Echtzeit-Sensordaten und Künstliche Intelligenz. Damit können Produktionsfehler schneller erkannt, behoben und zukünftig sogar vermieden werden.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.