Was ist künstliche Intelligenz?

Was ist künstliche Intelligenz?

Anspruchsvolle Probleme einfach per KI lösen

Bild: ©THANANIT/stock.adobe.com

Kaum eine Digitalstrategie kommt heutzutage ohne künstliche Intelligenz aus.
Doch was zeichnet eine KI aus und wo kommt sie zum Einsatz?


Künstliche Intelligenz ist ein Zweig der Informatik, der darauf abzielt, intelligente Maschinen zu schaffen. Im Vordergrund steht die Simulation menschlicher Intelligenzprozesse durch Maschinen, insbesondere Computersysteme. Zu diesen Prozessen gehören der Erwerb von Informationen und Regeln für die Verwendung der Informationen, das Verwenden von Regeln, um ungefähre oder endgültige Schlussfolgerungen zu ziehen und die Selbstkorrektur. Allgemein referenziert der Begriff künstliche Intelligenz auf die Imitation menschlichen Entscheidungsverhaltens durch einfache Algorithmen. In der Theorie reden wir von künstlicher Intelligenz, wenn ein Computer auf eine einfache Art anspruchsvolle Probleme löst, für deren Lösung eigentlich die Intelligenz eines Menschen benötigt wird. Man unterscheidet dabei zwischen schwacher und starker KI. Bei der schwachen KI handelt es sich um ein System, das für eine bestimmte Aufgabe entwickelt und trainiert wurde. Virtuelle persönliche Assistenten wie Apples Siri sind eine Form von schwacher KI. Die starke KI, auch als künstliche allgemeine Intelligenz bekannt, besitzt verallgemeinerte menschliche kognitive Fähigkeiten. Sie soll das menschliche Verhalten mechanisieren. Sie kann bei ungewohnten Aufgaben eine Lösung finden, ohne dass ein menschliches Eingreifen erforderlich ist. Sie soll dazu beitragen, den Menschen beim Denkprozess zu unterstützen.

Wann ist eine Maschine intelligent?

Ob eine Maschine in der Lage ist, so wie ein Mensch zu denken, lässt sich mit dem Turing-Test als akzeptiertes Messwerkzeug feststellen. Der Test geht auf den englischen Mathematiker Alan Turing zurück, der in den 1940er und 1950er Jahren ein Pionier auf dem Gebiet der künstlichen Intelligenz war und diesen Test erfunden hat. Danach wird einem Computer künstliche Intelligenz bescheinigt, wenn er unter bestimmten Bedingungen menschliche Antworten so nachahmen kann, dass ein Mensch nicht fehlerfrei bestimmen kann, ob die Antworten auf die gestellten Fragen von einem Computer oder einem anderen Menschen gegeben wurden.

Wie funktioniert es in der Praxis?

Die Einsatzfelder künstlicher Intelligenz sind sehr vielfältig. KI wird eingesetzt, um Cyberangriffe abzuwehren, als Assistent in der medizinischen Diagnostik und um die Idee vom autonomen Fahren zu realisieren. Vor allem in der Medizin wird KI bereits erfolgreich verwendet. Intelligente Maschinen führen bereits heute zahlreiche Operationsschritte durch, und das präziser als ein menschlicher Chirurg. KI-basierte Systeme wandeln die Computertomografien in dreidimensionale Bilder um, wodurch Ärzten die Möglichkeit eröffnet wird, sich ein spezifisches Bild von jeder Körperpartie zu machen. Immer mehr Expertensysteme, die in spezialisierten Einsatzgebieten genutzt werden, greifen auf künstliche Intelligenz zurück. Chatbots funktionieren als textbasierte Dialogsysteme gerade im Kundenservice über KI-basierte Spracherkennungstechnologien. Digitale Assistenten wie der Google Assistent werden immer besser, weil sie mit jeder neuen Anfrage automatisch dazulernen. Große, komplexe oder schwach strukturierte Massendaten können ohne den Einsatz von KI kaum produktiv genutzt werden. Intelligente Algorithmen helfen, Muster in den immens großen Datenmengen zu erkennen und in übersichtliche Kategorien einzuteilen. KI erlaubt Automatisierungen im Kundenservice und in kaufmännischen Prozessen. Durch ihre kognitiven Fähigkeiten lernen die Systeme mit jedem Kundenkontakt und jedem Geschäftsvorfall hinzu und können so immer präziser auf Anforderungen reagieren. Computer mit künstlicher Intelligenz haben das Potenzial, auf der Basis ihres Erfahrungsschatzes Zukunftsprognosen abzugeben. Intelligente Algorithmen können anhand des früheren Kaufverhaltens vorhersagen, wann ein Kunde ein bestimmtes Produkt erwerben will. KI ist in eine Vielzahl verschiedener Technologietypen eingebunden.

Seiten: 1 2 3Auf einer Seite lesen

Weissenberg Business Consulting GmbH
www.weissenberg-solutions.de

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige