Unternehmen brauchen neue KI-gestützte Prognosen

Die Stabilität langfristiger Vorhersagen ist dahin, denn die Auswirkungen der weltweiten Corona-Krise haben zu einer hohen Volatilität bei der Prognose von Trends und zu einer bedrohlichen Planungsunsicherheit für Unternehmen geführt. Es ist höchste Zeit, aktiv gegenzusteuern.
Bild: ©Julien Eichinger/fotolia.com

In der aktuellen Krisensituation versagen viele Prognosemodelle ihren Dienst. Wo Entscheider in ’normalen Zeiten‘ handlungsleitende Prognosen aus der KI-Analyse großer Datenmengen ableiteten, kämpfen Unternehmen heute mit völlig veränderten Voraussetzungen darum, Kundenverhalten, Hotline- oder Maschinenauslastungen prognostizieren zu können. Und das aus zwei Gründen.

Erstens hat sich die Datenlage quantitativ und qualitativ radikal verändert. Wo etwa üblicherweise vor Feiertagen Hunderttausende von Anfragen bei einem Verkehrsclub aufliefen, hat sich deren Zahl in der Ausnahmesituation dramatisch verringert. Analytiker sprechen in diesem Zusammenhang von Concept Drifts, die zu neuen Musterbildungen in der Datenmenge führen und vorhandene Modelle ihrem Verfallsdatum näherbringen. Die aktuell radikalen Verwerfungen im Kundenverhalten zu erkennen, ist die Aufgabe, die Unternehmen nun schnellstmöglich lösen müssen. Das betrifft z.B. den Kundenvertrieb bei Banken, die Anrufanalyse bei Behörden und Callcentern oder Störungsprognosen für den IT-Support oder technische Anlagen aufgrund geänderter Auslastung.

Zweitens sind durch diese extreme Schieflage in den Daten viele Prognosemodelle obsolet geworden. Es gilt also, die KI-Modelle der geänderten Datenlage anzupassen. Denn trotz der Ausnahmesituation können Unternehmen weiterhin Prognosen erstellen, sofern die Experten in der Lage sind, die entsprechenden Anpassungen schnell vorzunehmen. Dafür müssen die Modelle mit dem aktuellen Datenmaterial neu trainiert und eventuell neue Einflussvariablen identifiziert und modelliert werden. Darüber hinaus können neue Muster mittels Deep Learning, also Neuronalen Netzen, erkannt und erkannte Muster wiederum für die Prognose genutzt werden. Um auf der sicheren Seite zu sein, sollten die Verantwortlichen auch so genannte Ensemble-Modelle in Betracht ziehen. Diese Modelle setzten sich aus einer Vielzahl an unterschiedlichen KI-Modellen zusammen, wodurch einseitige Adjustierungen der Einzelmodelle in Summe ausgemittelt werden können und zu robusteren Prognosen führen.

Die Möglichkeiten, vorhandene Modelle an die aktuelle Situation anzupassen und somit vor ihrem Verfall zu schützen, sind also vorhanden. Doch was passiert, wenn der nächste Concept Drift ansteht? Mit der Aufhebung aktueller Beschränkungen kündigt sich dieser bereits an und zeigt damit auf, wie entscheidend es zukünftig sein wird, auf Änderungen und damit einhergehende Modellverschlechterungen reagieren zu können.

Speziell in Zeiten, in denen die viel zitierte Data Driven Company immer häufiger als Vision für die Zukunft des eigenen Unternehmens dient, steigt die Bedeutung geregelter Prozesse im Data-Science-Betrieb. Hier etablieren sich neue Betriebskonzepte für KI-Fabriken, in denen bekannte Ansätze aus der Softwareentwicklung, wie etwa agile Entwicklung, CI/CD oder DevOps, eine rasant wachsende Bedeutung erhalten.

Um aus der geänderten Informationsmenge neue, perspektivisch wertvolle Zusammenhänge zu generieren, ist Expertenwissen unverzichtbar. Neben der Expertise in KI und Data Science gehören Branchenwissen und Schnelligkeit dazu, um Unternehmen die dringend benötigten, fundierten Informationen für eine schnelle Entscheidungsunterstützung in unsicheren Zeiten zu liefern.

Das könnte Sie auch Interessieren

Bild: Fraunhofer IGD
Bild: Fraunhofer IGD
Software Arrange beschleunigt Absortierprozesse

Software Arrange beschleunigt Absortierprozesse

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.

Bild: Benteler International AG
Bild: Benteler International AG
Produktionsfehler: KI findet die Nadel im Heuhaufen

Produktionsfehler: KI findet die Nadel im Heuhaufen

In der Qualitätsprüfung ist Zeit ein wichtiger Faktor: Wer Fehler rechtzeitig findet, kann sie effektiv und kostensparend beheben. Gemeinsam mit dem Fraunhofer IEM setzt der Automobilzulieferer Benteler dafür in der Warmumformung von Fahrzeugteilen auf Echtzeit-Sensordaten und Künstliche Intelligenz. Damit können Produktionsfehler schneller erkannt, behoben und zukünftig sogar vermieden werden.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.