Teil 3 – Wie effizient ist das autonome System?

Die Arbeitsgemeinschaft Autonome Systeme der VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik hat zehn Grundsatzfragen zum Thema künstliche Intelligenz und autonome Systeme formuliert. Den Diskurs zu diesen Kernfragen im Umgang mit KI bildet die IT&Produktion einer Artikelserie ab. In diesem Interview erörtert Dr. Eckhard Roos, Leiter Industry Segment Management Process Automation bei Festo und Mitglied des Vorstands der VDI/VDE-GMA, wie effizient ein autonomes System ist.

Herr Dr. Roos, fangen wir direkt mit der Kernfrage an: Wie effizient ist das autonome System?

Bild: ©zapp2photo/Fotolia.com

Dr. Eckhard Roos: Bevor man diese Frage beantwortet, muss man den Begriff der Effizienz nochmals näher betrachten. Effizienz ist das Verhältnis von Aufwand und Nutzen, das in einem möglichst günstigen Verhältnis zueinanderstehen soll. Im Rahmen der üblichen Investitionsrechnungen haben wir hier schon viele Erfahrungen gesammelt. Wir wissen, welche Mittel wir einsetzen und welche Verbesserungen wir erreichen können. Und das können wir gut monetär bewerten. Autonome Systeme sind hier in vielen Bereichen Neuland. Eine Abschätzung ist oft nur sehr unzureichend möglich. Der Grund: Ein autonomes System soll seine Produktionsumgebung wahrnehmen, das Wahrgenommene verarbeiten und daraus Entscheidungen für den Produktionsprozess treffen. Es soll zudem auf Basis des Erlernten neue Möglichkeiten finden, um effizienter zu produzieren, Fehler zu vermeiden und Produktionsfragen selbstständig zu beantworten. Das verdeutlicht die Unschärfen auf der Aufwands- und Ertragsseite, die sich ihrerseits in den Effizienzberechnungen fortpflanzen.

Können Sie das näher erläutern?

Roos: Lassen sie uns die Aufwandsseite betrachten: Hier ist der Aufwand für die Entwicklung und das Trainieren von autonomen Systemen, der mangels Erfahrungen nur schwer hinreichend genau quantifizierbar ist. Für das erfolgreiche Trainieren der Systeme ist wiederum die Datenqualität sehr wichtig. Zudem müssen genügend Daten zur Verfügung stehen. Je nach Art des Trainings müssen diese Daten vorab noch qualifiziert werden. Beim überwachten Lernen wird z.B. der Zusammenhang zwischen Eingangs- und Ausgangsdaten auf Basis bekannter Produktionsdaten trainiert. Fachleute müssen diese Daten qualifizieren. Beim unüberwachten Lernen braucht es einen großen Datenbestand, den die Systeme analysieren, um auf dieser Basis später Anomalien im Prozess zu erkennen. Betrachtet man verschiedene Anlagentypen, etwa kontinuierliche Wasseraufbereitungsanlagen mit schnellen Abläufen in einer diskreten Fertigung, so wird klar, dass untrainiertes Lernen in nur einer Anlage der Wasseraufbereitung vergleichsweise langsam zu einer erfolgreichen Anwendung führen wird. Hier wird die Datensouveränität umso wichtiger.

Dr. Eckhard Roos, Leiter Industry Segment Management Process Automation bei Festo; Vorstandsmitglied VDI/VDE-GMA
Dr. Eckhard Roos, Leiter Industry Segment Management Process Automation bei Festo; Vorstandsmitglied VDI/VDE-GMABild: VDI Verein Deutscher Ingenieure e.V.

Experten diskutieren Fragen der Datensouveränität schon seit längerer Zeit. Welche Rolle spielt sie für die Effizienz von autonomen Systemen?

Roos: Grundsätzlich können wir Daten aus unterschiedlichen Unternehmen und Maschinen geeignet zusammenfassen. Bei KI – und autonome Systeme basieren auf KI – müssen wir jedoch den Widerspruch auflösen, dass wir einerseits Daten in ausreichender Qualität für die Entwicklung und das Training der KI benötigen, andererseits jedoch die Datensouveränität der Owner berücksichtigen müssen. Wir als Lieferant von Komponenten sind daran interessiert, möglichst viele Daten zur Performance unserer Komponenten zu bekommen. Über Original Equipment Manufacturer (OEM) gelangen diese Komponenten zum Endkunden. Wir müssen jetzt Endkunden und OEM davon überzeugen, Zugang zu den Performancedaten zu bekommen. Denn jeder Beteiligte in dieser Kette hat einen Nutzen vom Datenpooling. Wir können Informationen zur Produktverbesserung gewinnen, die Performance bei unterschiedlichen Umgebungsbedingungen erfassen und auch Hinweise an OEM und Enduser geben – etwa bezüglich Anomalien im Produktionsprozess. Das gilt auch für den OEM mit seinem Liefer- und Leistungsumfang. Der Anwender hat den Vorteil, durch die gezielte Detektion von Anomalien sich anbahnende Störungen frühzeitig zu erkennen und Produktionsstillstände zu vermeiden. Wir sollten uns daher besser abstimmen, wie und durch wen Daten administriert werden, anstatt zu diskutieren, wem die Daten gehören.

Seiten: 1 2Auf einer Seite lesen

VDI Verein Deutscher Ingenieure e.V.

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige