Dank KI lernen Roboter das Montieren

Für Montageaufgaben ist die flexible Roboterprogrammierung bislang noch aufwendig. Dies zu verbessern, ist das Ziel des Forschungsprojekts 'Rob-aKademI'. Die darin genutzten Technologien, allen voran das Maschinelle Lernen, sollen die Programmierung erleichtern und autonomer machen.
Das Forschungsprojekt »Rob-aKademI« möchte die Roboterprogrammierung für Montageaufgaben deutlich vereinfachen.
Das Forschungsprojekt »Rob-aKademI« möchte die Roboterprogrammierung für Montageaufgaben deutlich vereinfachen.Bild: Fraunhofer IPA/Rainer Bez

Die Partner im Forschungsprojekt ‚Rob-aKademI‘, darunter das Fraunhofer IPA und das Institut für Industrielle Fertigung und Fabrikbetrieb IFF der Universität Stuttgart, entwickeln Technologien, die die Roboterprogrammierung für Montageaufgaben vereinfachen und mehr automatisieren sollen. Grundlage hierfür ist ein rein digitales Abbild, also ein digitaler Zwilling, der Produktionsumgebung. Dieses Abbild verbunden mit einem speziellen Programmiergerüst wird in einer physikalischen Simulationsumgebung genutzt, damit Roboter Fähigkeiten für das flexible Montieren lernen. Sie erkunden in der Simulationsumgebung autonom ihre Umgebung, planen darauf aufbauend ihr Verhalten und optimieren es selbstständig bzw. lernen fortlaufend.

Drei Lernmodule für die Praxis

Genutzt wird hierfür künstliche Intelligenz (KI), und genauer Maschinelles Lernen und dessen Teilgebiet des sogenannten ‚Reinforcement Learning‘ (RL). Dieses meint, dass ein Algorithmus ähnlich dem Menschen nach dem Prinzip Versuch und Irrtum lernt. Er erhält ein Belohnungssignal für eine gelungene Aktion, um schrittweise besser zu werden. Im Projekt entstehen drei anwendungsbezogene Lernmodule, die das Expertenwissen über die Roboterprogrammierung und die auszuführende Montageoperation kapseln: Das ‚Perzeptionsmodul‘ für die Objekterkennung, das Lernmodul ‚Kraftgeregeltes Fügen‘ für robuste Fügestrategien und das Lernmodul ‚Schnappverbindungen‘ mit einem detaillierten physikalischen Fügemodell. Mit diesen Technologien werden robuste Roboterprogramme für die Übertragung der Simulationsergebnisse in die Realität erstellt. Mithilfe dreier praxisorientierter Anwendungsfälle, der Schaltschrank-, Schalter- und Leiterplattenmontage, validieren die Projektpartner ihre Ergebnisse. Die Module für kraftgeregeltes Fügen und Schnappverbindungen bauen auf der bereits jetzt verfügbaren IPA-Software ‚Pitasc‘ für kraftgeregelte Montageaufgaben auf und werden deren Fähigkeiten erweitern.

Mehrwerte der Automatisierung

‚Rob-aKademI‘ adressiert mit seinen Projektzielen insbesondere die Bedarfe einer zunehmend personalisierten Produktion. Montageanwendungen stellen aktuell noch hohe Anforderungen an die Roboterprogrammierung. Dazu zählen vielfältige und gleichzeitig anspruchsvolle, oft kraftgeregelte Prozesse, eine hohe Variantenzahl und kurze Zykluszeiten. Für viele Unternehmen und insbesondere den Mittelstand mit seinen kundenspezifischen Produkten lohnt es sich deshalb oft noch nicht, Roboter für die Montage zu nutzen, zumal nur ein Experte die Programmierung vornehmen kann. Dabei bieten Roboter Vorteile wie die Übernahme von nicht ergonomischen, gefährlichen oder monotonen Tätigkeiten und gleichbleibende Qualität in der Aufgabenausführung. Sie können überdies ein entscheidender Wettbewerbsfaktor gerade in Hochlohnländern wie Deutschland sein. Dank zahlreicher Automatisierungs-Potenzialanalysen, die das Fraunhofer IPA bereits weltweit durchgeführt hat, kennen die Forscher die Bedarfe der Unternehmen genau und bringen diese Expertise ins Projekt ein.

KI bringt Robotik voran

Dass Projekt ‚Rob-aKademI‘ ist Teil der großen Fördermaßnahme ‚KI01 KI in der Praxis‘ des Bundesministeriums für Bildung und Forschung. In der gleichen Fördermaßnahme läuft ein weiteres Forschungsprojekt vom Fraunhofer IPA: ‚Deep Picking‘ nutzt KI, um den roboterbasierten Griff-in-die-Kiste zu optimieren. Und vonseiten des IFF ist das Projekt ‚KI-basierte Roboterkalibrierung‘ (KIRK) beteiligt.

Seiten: 1 2Auf einer Seite lesen

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige