KI für Ingenieure beherrschbar machen

Künstliche Intelligenz (KI) steckt in Smartphones, Suchmaschinen oder Navigationsgeräten und erleichtert so den Alltag. Auch im Ingenieurwesen gibt es große Potenziale für deren Einsatz, wie in smarten Fabriken oder autonomen Fahrzeugen. Allerdings fehlt es an Verfahren, die das Verhalten der Systeme planbar und ihre Entscheidungen nachvollziehbar machen. Abhilfe schaffen soll das 'Kompetenzzentrum für KI-Engineering' (CC-King) unter Federführung des Fraunhofer-Instituts für Optronik, Systemtechnik und Bildauswertung IOSB mit Beteiligung des Karlsruher Instituts für Technologie (KIT) und des FZI Forschungszentrums Informatik.

„Herausforderungen gibt es bei KI- oder ML-basierten Systemen z.B. bei der Plausibilität und der Flexibilität“, sagt Michael Beigl, Professor für Pervasive Computing am KIT. Auch müsse die Nachvollziehbarkeit von Entscheidungen von KI-Systemen verbessert werden, so der Smart-Data-Experte, der die KIT-Aktivitäten innerhalb von CC-King koordiniert. Ein weiteres Forschungsthema sei die Integration von KI-Verfahren und KI-Systemen wie das Smart Data Innovation Lab (SDIL) mit existierenden Modellen, Simulatoren und Expertenwissen aus den Ingenieursdisziplinen.

Dazu gehören etwa das Vorgehensmodell beim KI-Engineering, Assistenzfunktionen zur Wissenserfassung und Optimierung von KI-Komponenten oder die Anwendung von KI- und ML-Verfahren bei beschränkten Ressourcen. Das FZI Forschungszentrum Informatik leitet dieses Arbeitspaket sowie die Anwendungsdomäne „Mobilität“ des Kompetenzzentrums. Darüber hinaus bringt das FZI als Einrichtung für praxisnahen Wissens- und Technologietransfer seine Kompetenz im Bereich der Mobilitätsforschung und der Künstlichen Intelligenz ein, insbesondere zu eingebetteter KI sowie KI-Methoden. Zur Erforschung und Demonstration der im Kompetenzzentrum umzusetzenden KI-Verfahren kann sowohl auf Infrastrukturen des Testfeldes Autonomes Fahren Baden-Württemberg als auch auf die Infrastrukturen des FZI House of Living Labs zurückgegriffen werden.

Seiten: 1 2Auf einer Seite lesen

Karlsruher Institut für Technologie

Das könnte Sie auch Interessieren

Bild: Fraunhofer IGD
Bild: Fraunhofer IGD
Software Arrange beschleunigt Absortierprozesse

Software Arrange beschleunigt Absortierprozesse

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.

Bild: Benteler International AG
Bild: Benteler International AG
Produktionsfehler: KI findet die Nadel im Heuhaufen

Produktionsfehler: KI findet die Nadel im Heuhaufen

In der Qualitätsprüfung ist Zeit ein wichtiger Faktor: Wer Fehler rechtzeitig findet, kann sie effektiv und kostensparend beheben. Gemeinsam mit dem Fraunhofer IEM setzt der Automobilzulieferer Benteler dafür in der Warmumformung von Fahrzeugteilen auf Echtzeit-Sensordaten und Künstliche Intelligenz. Damit können Produktionsfehler schneller erkannt, behoben und zukünftig sogar vermieden werden.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.