KI für Ingenieure beherrschbar machen

Künstliche Intelligenz (KI) steckt in Smartphones, Suchmaschinen oder Navigationsgeräten und erleichtert so den Alltag. Auch im Ingenieurwesen gibt es große Potenziale für deren Einsatz, wie in smarten Fabriken oder autonomen Fahrzeugen. Allerdings fehlt es an Verfahren, die das Verhalten der Systeme planbar und ihre Entscheidungen nachvollziehbar machen. Abhilfe schaffen soll das 'Kompetenzzentrum für KI-Engineering' (CC-King) unter Federführung des Fraunhofer-Instituts für Optronik, Systemtechnik und Bildauswertung IOSB mit Beteiligung des Karlsruher Instituts für Technologie (KIT) und des FZI Forschungszentrums Informatik.
Bild: ©sdecoret/Fotolia.com

Klassisches Engineering zeichnet sich durch Planbarkeit aus: Entwickler wissen schon in der Entwurfsphase, wie sich die einzelnen Komponenten und damit auch das Gesamtsystem später einmal verhalten werden. Systeme mit Bestandteilen künstlicher Intelligenz (KI) oder maschinellen Lernens (ML) sind nicht so vorhersehbar; datengetrieben entwickeln sie sich während ihrer Laufzeit weiter und entfalten erst im Betrieb ihre finale Funktionalität. Für die sichere Beherrschung von Ausnahmesituationen ist dies eine große Herausforderung – und auch der wirtschaftliche Nutzen ist vorab kaum bezifferbar. Ohne die Kalkulierbarkeit des klassischen Engineerings gestaltet sich der Einsatz intelligenter Systeme für Unternehmen deshalb schwierig.

Das „Kompetenzzentrum für KI-Engineering“ (CC-King) vereint die informationstechnische und ingenieurwissenschaftliche Kompetenz des Standorts Karlsruhe, um den KI-Einsatz in der Praxis entscheidend zu erleichtern: Das Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB, das FZI Forschungszentrum Informatik und das KIT forschen in engem Kontakt mit Unternehmen an grundlegenden Fragen, praxistauglichen Methoden und konkreten Anwendungsproblemen.

Grundsätzliche methodische Fragestellungen

Die (Un-)Vorhersehbarkeit des Verhaltens lernender Systeme ist ein zentrales Thema des KI-Engineering. „KI-Engineering hat zum Ziel, KI und ML ingenieursmäßig nutzbar zu machen, vergleichbar dem klassischen Engineering. Es handelt sich dabei um eine ganz junge Disziplin, die die Brücke schlägt zwischen KI-Grundlagenforschung und Ingenieurswissenschaften“, sagt Professor Jürgen Beyerer, wissenschaftlicher Direktor des Kompetenzzentrums, Institutsleiter des Fraunhofer IOSB und Professor am KIT. „Neben der Vorhersehbarkeit stehen dabei etwa auch die Sicherheit KI-basierter Systeme, die Erklärbarkeit von Entscheidungen oder die Einbindung von Vor- und Expertenwissen in datengetriebene Ansätze im Fokus der Forschenden.“ Ziel sei, ein Standard-Vorgehensmodell für KI-Engineering zu entwickeln, das KI-Technologien auch für große und heterogene Teams zielsicher einsetzbar macht.

„Als Technologieregion mit langer Tradition sowohl in den Ingenieurswissenschaften als auch in der Informatik bietet der Standort Karlsruhe optimale Voraussetzungen für das Kompetenzzentrum“, betont Beyerer. Mit dem Testfeld Autonomes Fahren Baden-Württemberg und der gerade entstehenden Karlsruher Forschungsfabrik gebe es zudem die passenden Reallabore für die Anwendungsfelder Mobilität und industrielle Produktion. „Unter diesen Bedingungen könnte KI-Engineering zum Alleinstellungsmerkmal deutscher KI werden.“

Beratung und Lernlabor für KMU

CC-King soll insbesondere kleinen und mittleren Unternehmen (KMU) die beherrschbare Nutzung von KI-Komponenten ermöglichen. „Auch hoch innovativen Mittelständlern mangelt es oft an KI-Kompetenz. Diese Lücke lässt sich schwer schließen, weil KI-Experten rar und zudem mit den typischen Anwendungsdomänen in der Regel nicht vertraut sind“, so Beyerer. Deshalb biete CC-King Unternehmen konkrete Unterstützung an. Firmen können etwa ganz unbürokratisch sogenannte QuickChecks oder TransferChecks in Anspruch nehmen. Eine Beratungsstelle sowie ein KI-Engineering-Lernlabor für die Schulung von Unternehmensmitarbeitern sind in Aufbau.

Die Beiträge der beteiligten Forschungsinstitutionen

Als federführender Konsortialpartner bringt das Fraunhofer IOSB seine breite informationstechnische Kompetenz sowohl in der industriellen Automatisierungs- und Regelungstechnik als auch in den Bereichen KI und ML in das Kompetenzzentrum ein. „Insbesondere haben wir in den vergangenen drei Jahren im Rahmen des Fraunhofer-internen Leitprojekts ‚ML4P – Machine Learning for Production‘ bereits ein toolgestütztes Vorgehensmodell für KI-Engineering in der industriellen Produktion entwickelt“, erläutert Dr. Julius Pfrommer, Forschungsgruppenleiter am Institut und technisch-wissenschaftlicher Leiter von CC-King. „Es erlaubt uns, planbar und wiederholbar KI-Verfahren zur Anwendung zu bringen. Dabei sind die KI-Algorithmen zentral wichtig, machen aber häufig nur einen Bruchteil der Gesamtlösung aus.“ Ein Fokus liege auf der tiefen Integration vorhandener Werkzeuge aus den Ingenieurdisziplinen mit den KI-Verfahren. „Nur so ist es möglich, dass die KI auch in den Bereichen gute Arbeit leistet, wo sie keine oder nur wenig Daten und Erfahrungswerte aus der Vergangenheit zur Verfügung hat.“ Als Erprobungsumgebung für den KI-Einsatz in der industriellen Produktion baut die Fraunhofer-Gesellschaft zusammen mit dem KIT derzeit die Karlsruher Forschungsfabrik, die 2021 den Betrieb aufnehmen wird.

Seiten: 1 2Auf einer Seite lesen

Karlsruher Institut für Technologie

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige