Hyperpersonalisiertes Marketing

Kundendaten bündeln und KI-gestützt analysieren

Die Angebote von Firmen lassen sich so leicht wie nie zuvor miteinander vergleichen. Wenn sich Hersteller nur begrenzt über Preis oder Qualität vom Wettbewerb abheben können, wird die Kundenbindung eine wichtige Kenngröße. Dabei hilft hyperpersonalisiertes Marketing, indem es Käufern im richtigen Moment benötigte Informationen und Angebote ausspielt.
Bild: ©auremar/stock.adobe.com

Der Ansatz des hyperpersonalisierten Marketings kann als weiterentwickelte Form des personalisierten Marketings verstanden werden. Während hier jedoch meist lediglich erfasste Daten verarbeitet werden, geht es heute mehr darum, mittels künstlicher Intelligenz (KI) und in der Gesamtmenge an Daten innewohnende Muster und Zusammenhänge zu erkennen. Auf dieser Grundlage ist es möglich für Kunden individuelle Marketingaktionen und Angebote zu erstellen, die auf deren Interessen und Bedürfnissen zu diesem Zeitpunkt zugeschnitten sind. Die Datenanalyse ist umso aussagekräftiger, je mehr relevante Daten in die Auswertung einfließen. Sie sind in den Firmen auch reichlich vorhanden, oft isoliert in Form von unterschiedlichen Datensilos in den einzelnen Abteilungen – und lassen sich nur schwer miteinander verbinden und analysieren.

Weitreichend personalisiert

Kunden mit personalisierten E-Mails anzusprechen, ist mittlerweile auch im B2B-Sektor Standard. Immer mehr Unternehmenskunden erwarten von ihren Lieferanten und Dienstleistern sowohl individuelle, auf ihre spezifischen Belange zugeschnittene Informationen und Angebote als auch eine Multi-Channel-Kommunikation. Nur die Adress- und Namensdatenbank sowie Kauf- und Suchhistorien auszuwerten, stößt da schnell an Grenzen. Ein hyperpersonalisiertes Marketing könnte beispielsweise so ablaufen: Nachdem ein Unternehmen neue Rechentechnik gekauft und installiert hat, erhalten seine Mitarbeiter vom Lieferanten zusätzliche, individualisierte Informationen, etwa zu Schulungsangeboten, Upgrades oder Anwenderstatistiken – je nach persönlichem Bedarf und auf verschiedenen Wegen: von E-Mails über Social Advertising bis hin zu Pop-ups.

In den Kunden hineinblicken

Mit automatisiertem One-to-one-Marketing wollen Unternehmen etwa Streuverluste reduzieren, die Konversionsrate oder die Anzahl der Kaufabschlüsse steigern sowie das Up- und Cross-Selling intensivieren. Laut einer Studie des US-Unternehmens Epsilon kaufen vier von fünf Verbrauchern eher etwas, wenn ihnen der Anbieter personalisierte Angebote unterbreitet. Hinzu kommt, dass sich Käufer nachweislich enger an einen Anbieter oder eine Marke binden, wenn ihnen das Unternehmen vermittelt, sie zu kennen und ihre Wünsche in den Fokus zu stellen. Kanalübergreifende Interaktionen zwischen Anbieter und Kunden entlang der gesamten Customer Journey sind dabei sehr hilfreich. Grad und Qualität der Hyperpersonalisierung werden umso höher, je mehr relevante Daten in die Analyse einfließen. Im Endkundengeschäft sind dazu in einigen Unternehmen schon entsprechende KI-basierte Systeme implementiert. Onlineshops werten etwa verfügbare, maßgebliche Daten aus, um Kunden und Interessenten mit jeweils einzigartigen Angeboten zu locken. Dazu gehören Merk- und Wunschlisten, Informationen zu Retouren oder Kaufabbrüchen sowie zum Bestell- und Zahlungsverhalten des Käufers. Auch die Vergabe von Likes oder Kaufempfehlungen finden Beachtung – sowohl bei der Auswertung historischer Daten als auch in Form einer Empfehlung unmittelbar nach dem Klicken.

Customer Data Platforms

Eine der größten Hürden auf dem Weg zum hyperpersonalisierten Marketing im B2B-Segment ist die heterogene Datenbasis in den meisten Unternehmen. Die Daten und Informationen befinden sich verstreut als sogenannte Datensilos an mehreren Stellen im Unternehmen. Zum Teil wissen die einzelnen Abteilungen gar nicht, welche Daten neben ihren eigenen noch existieren. Hier setzen sogenannte Customer Data Platforms an, die Daten aus den verschiedenen Systemen zusammenführen, verknüpfen und anreichern. KI-gestützt lassen sich etwa in den Kundeninteraktionen und Nutzungsdaten Muster identifizieren, um neue Erkenntnisse zu gewinnen. Das führt bis hin zu einer sehr treffsicheren Vorhersage des künftigen Kundenverhaltens, um so beispielsweise abwanderungsbereite Kunden zu ermitteln und rechtzeitig Gegenmaßnahmen zu ergreifen. Die Daten dienen dazu, Segmente zu erstellen, um die Kunden gezielter – sprich hyperpersonalisiert – anzusprechen und relevante Produkte und Services zu empfehlen.

Grundsätzliche Überlegungen

Um auf ein hyperpersonalisiertes Marketing umzustellen, sind einige grundsätzliche Entscheidungen zu treffen:

Seiten: 1 2Auf einer Seite lesen

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige