Deep Learning für die industrielle Computertomographie

Die künstliche Intelligenz ist derzeit in aller Munde. Inwiefern sich ihre Methoden auch in der industriellen Computertomographie (CT) einsetzen lassen, ist derzeit Gegenstand eines Entwicklungsprojekts bei Volume Graphics. Der Hersteller von CT-Analysesoftware lässt sich dabei weit über die Schulter schauen.

Referenzmodelle nicht nötig

Erstes Fazit: Die Deep-Learning-Methode ist bei geringeren Auflösungen und schlechteren Datenqualitäten weit treffsicherer als herkömmliche Methoden und entlastet den Nutzer von der Abstimmung vieler Scan- und Analyseparameter. Sie liefert zuverlässigere Fehleranalysen und fördert generell kleinere Defekte zu Tage.

Zurück zur Inline-Situation mit ihren knappen Prüfzeiten. Die Anwender greifen häufig zu Referenzmodellen von Gutbauteilen für Soll-Ist-Vergleiche. Auf diese Weise lassen sich Abweichungen sicher erkennen. Wenn sich die Bauteile aber ändern, etwa durch Abweichungen im Gießprozess, durch Streuungen in der Werkstoffqualität oder bestimmter Prozessparameter, ist diese Vorgehensweise problematisch und macht Nachbewertungen notwendig. Nachbewertungen in einer Größenordnung von 20 bis 25% sind in der Praxis die Regel.

Zweites Fazit: Die Deep-Learning-Methode funktioniert referenzlos und damit zu jeder Zeit und mit allen Bauteilen in gleicher Weise effektiv. Sie macht Nachbewertungen weitgehend überflüssig. Volume Graphics plant bereits, die Methode in künftige Releases der Analysesoftware zu implementieren. Das Training des KNN werden die Heidelberger CT-Spezialisten vornehmen. Neben den beschriebenen Grundzügen des Ansatzes wird dann auch eine Klassifizierung der Defekte enthalten sein. Dem Anwender darf also ein leistungsstarkes Werkzeug erwarten, mit dem er viel Zeit und Kosten sparen kann. n @Kontakt _FA: over Union (IoU)

Die Intersection over Union (IoU) zeigt in Prozent, inwieweit die Vorhersagen der KNN voxelgenau mit den realen Annotationen, der Ground Truth, übereinstimmen. Dem Diagramm oben liegt ein Evaluierungsdatensatz mit 54 Defekten zugrunde. Eine niedrige IoU, bedeutet, dass bei der Beantwortung der Ausgangsfrage („Welche Voxel gehören zum Defekt, welche nicht?“), viele Voxel falsch interpretiert wurden. Dies kommt auch bei der herkömmlichen Experten-Annotation sehr häufig vor. Der Wahrscheinlichkeits-Schwellenwert auf der X-Achse (0 = kein Defekt, 1 = Defekt) zeigt, stark vereinfacht gesprochen, dass die Deep-Learning-Methode die robusteren Ergebnisse liefert. Der Übergang Defekt/nicht Defekt ist schärfer. Die klassische Vorgehensweise zeigt im Vergleich dazu eine große Streuung.

Die Probability of Detection (PoD) zeigt, dass die Deep-Learning-Methode kleinere Defekte findet als der klassische filterbasierte Ansatz. Auf der X-Achse sind die Defektgrößen nach Anzahl der Voxel aufgetragen. Bereits bei weniger als 4 Voxeln steigt die Kurve schnell an. Ab einer Defektgröße von etwa 5 Voxeln findet das KNN so gut wie 100% aller Defekte. Die klassische Methode wird erst später fündig und kommt in keinem Falle auf 100%. Getestet wurde der Zusammenhang mit einem schwer zu detektierenden Datensatz mit geringen Kontrasten und hoher Artefaktbehaftung. Ein besseres Abschneiden des filterbasierten Ansatzes wäre möglich, aber nur mit entsprechendem Aufwand (hohe Auflösungen, lange Scanzeiten, lokale Filteranwendung auf Regions of Interest usw.).

Seiten: 1 2Auf einer Seite lesen

Thematik: Technologie
Volume Graphics GmbH

Das könnte Sie auch Interessieren

Bild: Fraunhofer IEM
Bild: Fraunhofer IEM
Effiziente Produktionsplanung: KI reduziert Aufwand bei Schulte Kartonagen um 25%

Effiziente Produktionsplanung: KI reduziert Aufwand bei Schulte Kartonagen um 25%

Welcher Liefertermin steht wann an? Wie aufwändig muss die Maschine umgerüstet werden? Ist das benötigte Material bereits geliefert? Um die Reihenfolge verschiedener Kundenaufträge optimal zu planen, müssen Produktionsplaner:innen eine Vielzahl von Faktoren kennen und einschätzen. Bei Schulte Kartonagen hat ab sofort ein intelligenter KI-Assistent alle Faktoren im Blick – und macht Vorschläge für die effiziente Planung der Produktion. Gefördert wurde die Zusammenarbeit mit dem Fraunhofer IEM und den Universitäten Paderborn und Bielefeld im it’s OWL-Projekt ARISE.

Bild: schoesslers GmbH
Bild: schoesslers GmbH
appliedAI Institute for Europe launcht kostenlosen KI-Onlinekurs

appliedAI Institute for Europe launcht kostenlosen KI-Onlinekurs

Das gemeinnützige appliedAI Institute for Europe stellt den kostenfreien Online-Kurs ‚AI Essentials‘ zur Verfügung, der es Interessierten ermöglicht, in die Welt der Künstlichen Intelligenz einzusteigen. Konzepte wie maschinelles Lernen und Deep-Learning sowie deren Anwendungsmöglichkeiten und Auswirkungen auf unser Leben und unsere Wirtschaft sind Teile der umfassenden Einführung.

Bild: Trumpf SE + Co. KG
Bild: Trumpf SE + Co. KG
Künstliche Intelligenz macht Fabriken clever

Künstliche Intelligenz macht Fabriken clever

Seit dem Siegeszug des Chatbots ChatGPT ist künstliche Intelligenz in aller Munde. Auch in der industriellen Produktionstechnik kommt KI mit großen Schritten voran. Lernende Maschinen machen die Fertigung effizienter. Wie funktioniert das genau? Das können Interessierte auf der EMO Hannover 2023 vom 18. bis 23. September erfahren. Die Weltleitmesse für Produktionstechnologie wird ihr Fachpublikum unter dem Claim ‚Innovate Manufacturing‘. mit frischen Ideen inspirieren und künstliche Intelligenz spielt dabei ihre Stärken aus.

Bild: Mitsubishi Electric Corporation, Japan
Bild: Mitsubishi Electric Corporation, Japan
KI-gestütztes Analysetool für moderne Produktionslinien

KI-gestütztes Analysetool für moderne Produktionslinien

Das Data-Science-Tool Melsoft MaiLab von Mitsubishi soll Unternehmen bei der Digitalisierung ihrer Fertigung und unterstützen und so deren Produktivität steigern. Die neue Lösung ist eine intuitive, bedienerzentrierte Plattform, die KI nutzt, um Abläufe automatisch zu verbessern. Sei es Abfallvermeidung durch geringere Ausschussmengen, weniger Stillstandszeiten durch vorbeugende Wartung oder Senkung des Energieverbrauchs durch Prozessoptimierung.

Bild: Fraunhofer IGD
Bild: Fraunhofer IGD
Software Arrange beschleunigt Absortierprozesse

Software Arrange beschleunigt Absortierprozesse

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.