Modellentwicklung mit Sharing-Economy-Ansatz

Mit Federated Learning sensible Daten sicher teilen

Beim Federated Learning-Ansatz bezieht die künstliche Intelligenz ihre Informationen aus unterschiedlichen Modellen, um den Lerneffekt zu verstärken. Gerade seltene Vorfälle wie Maschinenstörungen lassen sich so besser verstehen. Der Kniff dabei ist, dass sensible Daten etwa zu Personen keine Systemgrenzen überschreiten.

Daten bilden die Basis für industrielle Digitalisierungsvorhaben. Obwohl Unternehmen diese Daten selbst produzieren, leiden viele von ihnen an ‚Datennot‘. Die Ursachen dafür sind vielfältig. Eine fehlende oder unzureichende technische Infrastruktur zur systematischen Datenerfassung ist in einigen Industrieunternehmen immer noch eine der größten Hürden. Aber auch in stärker digitalisierten Unternehmen, in denen z.B. die Sensorik an Maschinen und Anlagen täglich große Datenbestände produziert, ist die Datengrundlage oft ein Stolperstein. Dieser zeigt sich beispielsweise in Form von abgeschlossenen Datensilos, die nur einzelnen Abteilungen zur Verfügung stehen. Die Themen Datenhoheit und Datenschutz als regulatorische Basis der Datenverarbeitung, sind hier ein Bremsklotz für das schnelle und umfangreiche Training von Analysemodellen. Auch Konflikte über die Nutzung der Daten zwischen Maschinen- und Komponentenbauern und den jeweiligen Betreibern der Anlagen verringern das tatsächlich vorhandene Datenpotenzial.

Die Industrie 4.0 braucht sie wie der Mensch die Luft zum Atmen: Daten. Doch im Unterschied zum Menschen und seiner Atemluft, produziert die Industrie 4.0 ihre Daten selbst. Doch nicht immer sind die richtigen leicht zu finden und zu erschließen.
Die Industrie 4.0 braucht sie wie der Mensch die Luft zum Atmen: Daten. Doch im Unterschied zum Menschen und seiner Atemluft, produziert die Industrie 4.0 ihre Daten selbst. Doch nicht immer sind die richtigen leicht zu finden und zu erschließen.Bild: Eoda GmbH

Begrenzte Daten

Wenn es um den Einsatz von Data Science in der Industrie geht, landet man beinahe zwangsläufig bei der vorausschauenden Instandhaltung (Predictive Maintenance). Die Prognose von Maschinenstörungen und -ausfällen auf Basis der verfügbaren Sensordaten birgt im Erfolgsfall ein enormes wirtschaftliches Potenzial. Aus Data-Science-Gesichtspunkten sind Maschinenausfälle aber oftmals seltene Ereignisse mit heterogenem Ursprung und die vorhandenen historischen Daten von Störungsfällen sehr begrenzt. Haben die relevanten Daten einen Personenbezug – z.B. zum jeweiligen Maschinenführer – erschwert dies die Nutzung zusätzlich. Die Qualität der für Predictive Maintenance eingesetzten Machine-Learning-Modelle ist aber untrennbar mit der verfügbaren Menge an relevanten Trainingsdaten verbunden. Ist sie unzureichend, kann die Vision der vorausschauenden Instandhaltung unerreichbar bleiben. Dieser Anwendungsfall ist ein prägnantes Beispiel für die Datenhoheit als Herausforderung. Die zentralen Fragen lauten: Wer hat die Hoheit über die Daten und wie können Wege gefunden werden, sodass Maschinenbauer und -betreiber wirklich von den Daten profitieren können?

Federated Learning

Eine mögliche Antwort auf diese Frage ist Federated Learning. Methodisch handelt es sich bei Federated Learning um eine spezielle Technik des maschinellen Lernens. Im Kern geht es um einen Sharing-Economy-Ansatz, der hilft, die Güte von Machine-Learning-Modellen zu verbessern und gleichzeitig Datenschutzbestimmungen einzuhalten. Dabei wird aus einer Vielzahl einzelner Analysemodelle unterschiedlicher Akteure ein zentrales Modell gebildet. Die Lerneffekte dieses Modells fließen schließlich iterativ zurück in die einzelnen Modelle der unterschiedlichen Akteure und verbessern diese dadurch. Durch diesen dezentralen Ansatz steht eine deutlich umfangreichere Datenbasis für das Training der Modelle zur Verfügung, ohne dass diese Daten dafür den Besitzer wechseln müssen – die Herausgabe sensibler Informationen entfällt. Das zentrale Analysemodell erhält nur die Lernergebnisse, also die anonymisierten Parameter der einzelnen Modelle.

Verstärkter Lerneffekt

Durch die Einbeziehung der Informationen aus dem Training einer Vielzahl unterschiedlicher Modelle, wird der entstehende Lerneffekt massiv verstärkt. Verschiedene Analysemodelle können dabei parallel zueinander trainiert werden. Im Vergleich zu einem einzigen Modell und einer begrenzten Datenbasis können Analysemodelle mit Federated Learning deutlich schneller eine höhere Genauigkeit erreichen. Predictive Maintenance ist dabei nur ein mögliches Analyseszenario, für die Verbindung der Analysemodelle unterschiedlicher Maschinenbauer und -betreiber und damit indirekt auch unterschiedlicher Datentöpfe. Durch diese Verbindung kann das Volumen an Trainingsdaten deutlich erweitert und Wissensvorsprünge generiert werden.

Seiten: 1 2Auf einer Seite lesen

Das könnte Sie auch Interessieren

Bild: Fraunhofer IGD
Bild: Fraunhofer IGD
Software Arrange beschleunigt Absortierprozesse

Software Arrange beschleunigt Absortierprozesse

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.

Bild: Benteler International AG
Bild: Benteler International AG
Produktionsfehler: KI findet die Nadel im Heuhaufen

Produktionsfehler: KI findet die Nadel im Heuhaufen

In der Qualitätsprüfung ist Zeit ein wichtiger Faktor: Wer Fehler rechtzeitig findet, kann sie effektiv und kostensparend beheben. Gemeinsam mit dem Fraunhofer IEM setzt der Automobilzulieferer Benteler dafür in der Warmumformung von Fahrzeugteilen auf Echtzeit-Sensordaten und Künstliche Intelligenz. Damit können Produktionsfehler schneller erkannt, behoben und zukünftig sogar vermieden werden.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.