Deep Learning mit Time-of-Flight Sensorik für Einsteiger

Deep Learning mit Time-of-Flight Sensorik für Einsteiger
Die Kombination von Time-of-Flight Kameras und Deep Learning ermöglicht es komplexe Aufgaben zeit- und kosteneffizient zu lösen, da das Anlernen der neuralen Netze von der räumlichen Information stark profitiert. Zudem erlaubt die 3D-Punktwolke ein genaues Positionieren und Vermessen von Objekten.
Bild: Data Spree GmbH

Die Stärken von Deep Learning basierter Bildverarbeitung treten besonders bei einem hohen Variantenreichtum der zu untersuchenden Gegenstände auf. Ein gutes Beispiel hierfür ist die Sortierung und Verarbeitung von landwirtschaftlichen Erzeugnissen. Diese können sich in Form und Farbe stark voneinander unterscheiden, was klassische Bildverarbeitungsmethoden vor große Herausforderungen stellt. Zusätzlich erschweren oft unterschiedliche Lichtverhältnisse das Erstellen von generalisierten Lösungen, wodurch RGB-Kameras nur noch einen geringen Vorteil gegenüber Graustufenaufnahmen bieten. Abhilfe schaffen hier 3D-Kameras, wie die blaze von Basler, die über die Time-of-Flight (ToF) Methode nicht nur Graustufenaufnahmen als Intensitätsbild erzeugen, sondern zusätzlich, über Laufzeitmessungen von Lichtimpulsen im NIR, Distanzmessungen für jeden einzelnen Pixel vornehmen. Die resultierende Aufnahme kann anschließend als 2D-Tiefenbild oder als 3D-Punktwolke weiterverarbeitet werden und liefert zusätzliche Informationen über die abgebildete Szene. Im Vergleich zu 2D-RGB-Aufnahmen werden hier die Farbinformationen durch Forminformationen ersetzt, welches nicht nur Vorteile bei der gleichzeitigen Erkennung von roten und grünen Äpfeln hat, sondern zusätzliche Applikationen ermöglicht, wie z.B. das genau Positionieren und Vermessen der erkannten Objekte.

Bild 2: Mit der Deep Learning DS KI-Plattform von Data Spree können Echtzeitlösungen auch ohne jegliche Programmier- und Deep Learning Vorkenntnisse entwickelt werden.
Bild 2: Mit der Deep Learning DS KI-Plattform von Data Spree können Echtzeitlösungen auch ohne jegliche Programmier- und Deep Learning Vorkenntnisse entwickelt werden.Bild: Data Spree GmbH

Eigene Deep Learning Lösung

In einer Beispielanwendung für die Detektion und Klassifikation von Früchten sieht man, wie man mit der 3D-Kamera und der Deep Learning DS KI-Plattform von Data Spree eine Echtzeitlösung entwickelt, ohne jegliche Programmier- und Deep Learning Vorkenntnisse. Durch die Tageslichttauglichkeit und die IP67 Schutzklasse der Kamera lässt sich diese Lösung auch direkt auf mobilen Arbeitsmaschinen in rauen Umgebungen einsetzen. Allgemein lässt sich der Arbeitsablauf für die Erstellung von Deep Learning Modellen in fünf Abschnitte unterteilen:

– Datenakquise (Aufnahme von Beispielbildern)
– Annotation (Anreichern mit Metadaten)
– Training (Optimieren des Deep Neural Networks)
– Deployment (Ausführen des Netzes auf der Zielhardware)
– Kontinuierliche Verbesserung des neuronalen Netzes durch neue Daten

Da diese Schritte zunächst nach einer großen Herausforderung klingen, wurde mit Deep Learning DS eine Plattform entwickelt, um es dem Anwender so leicht wie möglich zu machen, in kürzester Zeit seine eigene Deep-Learning-Lösung zu entwickeln:

Datenakquise: Zunächst müssen Bilder von den Früchten aufgenommen werden, welche später erkannt und klassifiziert werden sollen. Für diese Anwendung wurden ca. 500 Bilder von Bananen, Äpfeln und Birnen aufgenommen. Die Aufnahmesoftware erstellt 2-Kanal-Bilddaten aus der Graustufen-Intensitätsaufnahme und dem Tiefenbild, welches für jeden Pixel den Abstand in Millimetern enthält. Die Bilddaten werden direkt in die Deep Learning Plattform geladen.

Annotation: Anschließend werden die Daten mit Metadaten angereichert. Dazu werden manuell Boxen um die Früchte gezeichnet und die entsprechende Kategorie (Apfel, Birne etc.) zugeordnet. Damit wird festgelegt, was das neuronale Netz im folgenden Schritt lernen soll. Der Prozess kann bereits nach circa 100 manuell annotierten Bildern beschleunigt werden, indem ein initiales Deep Learning Modell Vorschläge für die weiteren Aufnahmen generiert, die der Anwender anschließend nur noch korrigiert.

Training: Sind alle 500 Bilder annotiert, erfolgt über wenige Mausklicks die Erstellung und das Training eines weiteren Modells. Abhängig von der Datenmenge und der Komplexität der Aufgabe dauert dieser Prozess zwischen wenigen Stunden und einem Tag. Während des Trainings wird die Erkennungsgenauigkeit zyklisch auf einem vorenthaltenem Testdatensatz geprüft, um die aktuelle Güte des Modells abzuschätzen. Sobald eine hinreichende Genauigkeit erreicht ist, läuft das Training noch etwas weiter, um die Robustheit der Erkennung weiter zu verbessern.

Deployment und Inferenz: Sobald das Training abgeschlossen ist, wird das fertig trainierte Modell heruntergeladen und direkt über die Ausführungssoftware Inference DS ausgeführt. Zahlreiche USB-, Netzwerk- und gängigen Industriekameras sowie die blaze ToF Kamera (inklusive entsprechender Vorverarbeitung) sind bereits vollständig integriert, sodass die Deep Learning Applikation direkt gestartet werden kann. Mit der zusätzlichen Tiefeninformation der ToF-Kamera können die detektierten Früchte auch dreidimensional im Raum verortet werden, um z.B. in Sortieranlagen die genaue Position an einen Roboter zu übergeben.

Data Spree GmbH
data-spree.com/de/deep-learning-mit-time-of-flight-sensorik/

Das könnte Sie auch Interessieren

Bild: Fraunhofer IGD
Bild: Fraunhofer IGD
Software Arrange beschleunigt Absortierprozesse

Software Arrange beschleunigt Absortierprozesse

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.

Bild: Benteler International AG
Bild: Benteler International AG
Produktionsfehler: KI findet die Nadel im Heuhaufen

Produktionsfehler: KI findet die Nadel im Heuhaufen

In der Qualitätsprüfung ist Zeit ein wichtiger Faktor: Wer Fehler rechtzeitig findet, kann sie effektiv und kostensparend beheben. Gemeinsam mit dem Fraunhofer IEM setzt der Automobilzulieferer Benteler dafür in der Warmumformung von Fahrzeugteilen auf Echtzeit-Sensordaten und Künstliche Intelligenz. Damit können Produktionsfehler schneller erkannt, behoben und zukünftig sogar vermieden werden.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.