Deep Learning mit Time-of-Flight Sensorik für Einsteiger

Deep Learning mit Time-of-Flight Sensorik für Einsteiger
Die Kombination von Time-of-Flight Kameras und Deep Learning ermöglicht es komplexe Aufgaben zeit- und kosteneffizient zu lösen, da das Anlernen der neuralen Netze von der räumlichen Information stark profitiert. Zudem erlaubt die 3D-Punktwolke ein genaues Positionieren und Vermessen von Objekten.
Bild: Data Spree GmbH

Die Stärken von Deep Learning basierter Bildverarbeitung treten besonders bei einem hohen Variantenreichtum der zu untersuchenden Gegenstände auf. Ein gutes Beispiel hierfür ist die Sortierung und Verarbeitung von landwirtschaftlichen Erzeugnissen. Diese können sich in Form und Farbe stark voneinander unterscheiden, was klassische Bildverarbeitungsmethoden vor große Herausforderungen stellt. Zusätzlich erschweren oft unterschiedliche Lichtverhältnisse das Erstellen von generalisierten Lösungen, wodurch RGB-Kameras nur noch einen geringen Vorteil gegenüber Graustufenaufnahmen bieten. Abhilfe schaffen hier 3D-Kameras, wie die blaze von Basler, die über die Time-of-Flight (ToF) Methode nicht nur Graustufenaufnahmen als Intensitätsbild erzeugen, sondern zusätzlich, über Laufzeitmessungen von Lichtimpulsen im NIR, Distanzmessungen für jeden einzelnen Pixel vornehmen. Die resultierende Aufnahme kann anschließend als 2D-Tiefenbild oder als 3D-Punktwolke weiterverarbeitet werden und liefert zusätzliche Informationen über die abgebildete Szene. Im Vergleich zu 2D-RGB-Aufnahmen werden hier die Farbinformationen durch Forminformationen ersetzt, welches nicht nur Vorteile bei der gleichzeitigen Erkennung von roten und grünen Äpfeln hat, sondern zusätzliche Applikationen ermöglicht, wie z.B. das genau Positionieren und Vermessen der erkannten Objekte.

Bild 2: Mit der Deep Learning DS KI-Plattform von Data Spree können Echtzeitlösungen auch ohne jegliche Programmier- und Deep Learning Vorkenntnisse entwickelt werden.
Bild 2: Mit der Deep Learning DS KI-Plattform von Data Spree können Echtzeitlösungen auch ohne jegliche Programmier- und Deep Learning Vorkenntnisse entwickelt werden.Bild: Data Spree GmbH

Eigene Deep Learning Lösung

In einer Beispielanwendung für die Detektion und Klassifikation von Früchten sieht man, wie man mit der 3D-Kamera und der Deep Learning DS KI-Plattform von Data Spree eine Echtzeitlösung entwickelt, ohne jegliche Programmier- und Deep Learning Vorkenntnisse. Durch die Tageslichttauglichkeit und die IP67 Schutzklasse der Kamera lässt sich diese Lösung auch direkt auf mobilen Arbeitsmaschinen in rauen Umgebungen einsetzen. Allgemein lässt sich der Arbeitsablauf für die Erstellung von Deep Learning Modellen in fünf Abschnitte unterteilen:

– Datenakquise (Aufnahme von Beispielbildern)
– Annotation (Anreichern mit Metadaten)
– Training (Optimieren des Deep Neural Networks)
– Deployment (Ausführen des Netzes auf der Zielhardware)
– Kontinuierliche Verbesserung des neuronalen Netzes durch neue Daten

Da diese Schritte zunächst nach einer großen Herausforderung klingen, wurde mit Deep Learning DS eine Plattform entwickelt, um es dem Anwender so leicht wie möglich zu machen, in kürzester Zeit seine eigene Deep-Learning-Lösung zu entwickeln:

Datenakquise: Zunächst müssen Bilder von den Früchten aufgenommen werden, welche später erkannt und klassifiziert werden sollen. Für diese Anwendung wurden ca. 500 Bilder von Bananen, Äpfeln und Birnen aufgenommen. Die Aufnahmesoftware erstellt 2-Kanal-Bilddaten aus der Graustufen-Intensitätsaufnahme und dem Tiefenbild, welches für jeden Pixel den Abstand in Millimetern enthält. Die Bilddaten werden direkt in die Deep Learning Plattform geladen.

Annotation: Anschließend werden die Daten mit Metadaten angereichert. Dazu werden manuell Boxen um die Früchte gezeichnet und die entsprechende Kategorie (Apfel, Birne etc.) zugeordnet. Damit wird festgelegt, was das neuronale Netz im folgenden Schritt lernen soll. Der Prozess kann bereits nach circa 100 manuell annotierten Bildern beschleunigt werden, indem ein initiales Deep Learning Modell Vorschläge für die weiteren Aufnahmen generiert, die der Anwender anschließend nur noch korrigiert.

Training: Sind alle 500 Bilder annotiert, erfolgt über wenige Mausklicks die Erstellung und das Training eines weiteren Modells. Abhängig von der Datenmenge und der Komplexität der Aufgabe dauert dieser Prozess zwischen wenigen Stunden und einem Tag. Während des Trainings wird die Erkennungsgenauigkeit zyklisch auf einem vorenthaltenem Testdatensatz geprüft, um die aktuelle Güte des Modells abzuschätzen. Sobald eine hinreichende Genauigkeit erreicht ist, läuft das Training noch etwas weiter, um die Robustheit der Erkennung weiter zu verbessern.

Deployment und Inferenz: Sobald das Training abgeschlossen ist, wird das fertig trainierte Modell heruntergeladen und direkt über die Ausführungssoftware Inference DS ausgeführt. Zahlreiche USB-, Netzwerk- und gängigen Industriekameras sowie die blaze ToF Kamera (inklusive entsprechender Vorverarbeitung) sind bereits vollständig integriert, sodass die Deep Learning Applikation direkt gestartet werden kann. Mit der zusätzlichen Tiefeninformation der ToF-Kamera können die detektierten Früchte auch dreidimensional im Raum verortet werden, um z.B. in Sortieranlagen die genaue Position an einen Roboter zu übergeben.

Data Spree GmbH
data-spree.com/de/deep-learning-mit-time-of-flight-sensorik/

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.

Anzeige

Anzeige

Anzeige