Blick in die Black Box

Heatmap ermöglicht mehr Deep-Learning-Transparenz
Deep-Learning-Netze sind noch weitgehend eine Black Box. Anwender können die Entscheidung des Klassifikators während des Inspektionsprozesses oft nicht direkt nachvollziehen. Anhand einer Heatmap lässt sich jetzt erkennen, welche Bereiche eines Bildes starken Einfluss auf die Zuordnung des abgebildeten Objekts zu einer bestimmten Klasse haben.
Bild 1 | Ein fehlerhafter Trainingsprozess beim Deep Learning führt 
zu falschen Erkennungsergebnissen. 
So wurde ein Braunbär, der auf einer 
Eisfläche stand, von den Algorithmen als Eisbär klassifiziert.
Bild 1 | Ein fehlerhafter Trainingsprozess beim Deep Learning führt zu falschen Erkennungsergebnissen. So wurde ein Braunbär, der auf einer Eisfläche stand, von den Algorithmen als Eisbär klassifiziert.Bild: MVTec Software GmbH

Moderne Bildverarbeitungssysteme nutzen seit geraumer Zeit Verfahren, die auf künstlicher Intelligenz (KI) beruhen, wie etwa Deep Learning. Durch das Training mittels Bilddaten lernt die Technologie eigenständig Merkmale, die typisch für eine bestimmte Objektklasse sind. Dies erleichtert die automatische Zuweisung der Bildinformationen zur jeweiligen Klasse und sorgt für wesentlich robustere Erkennungsraten. Auf diese Weise lassen sich sowohl Objekte als auch Defekte präziser identifizieren und lokalisieren. Der Trainingsvorgang läuft jedoch weitgehend im Dunkeln ab. Nutzer können nicht nachvollziehen, was das Deep-Learning-Netzwerk aus den Daten lernt. Im Falle einer falschen Klassifikation lässt sich der Fehler daher nur sehr schwer aufdecken und debuggen. Ein Beispiel aus einem Praxistest: Ein Braunbär, der auf einer Eisfläche stand, wurde von den Deep-Learning-Algorithmen als Eisbär klassifiziert. Die Software konnte aufgrund eines fehlgeleiteten Trainingsprozesses nicht zwischen dem Hintergrund und dem zu erkennenden Objekt unterscheiden. Aufgrund des mangelnden Einblicks in die Deep-Learning-Black-Box lässt sich der Fehler nicht eindeutig eingrenzen, was die zweifelsfreie Erkennung behindert.

Aufzeigen relevanter Bildbereiche

Ein neues Bildverarbeitungs-Feature schafft hier Abhilfe: MVTec Halcon 19.11 beinhaltet eine Heatmap-Funktion, die auf der Grad-CAM-Methode (Gradient-Weighted Class Activation Mapping) basiert. Damit lässt sich präzise analysieren, welche Teile eines Bildes den größten Einfluss auf die Zuordnung eines Objekts zu einer bestimmten Klasse haben. Diese Bereiche werden im Bild mittels einer Falschfarbendarstellung hervorgehoben. Dies erleichtert die Detektion von Trainingsfehlern, was mehr Transparenz in den gesamten Prozess bringt und die Erkennung von Gegenständen und Defekten deutlich verbessert. Zurück Eisbärbeispiel: Die Heatmap führt hier zu der Erkenntnis, dass das Deep-Learning-Netz als wichtigstes Unterscheidungsmerkmal im Erkennungsprozess nicht den Bären selbst, sondern den Hintergrund, also die Eis- bzw. Schneefläche gewählt hat. Das Training beruhte also auf fehlerhaften oder unvollständigen Daten und führte deshalb zum falschen Ergebnis. Auf Basis der Heatmap-Auswertung kann nun ein zusätzliches Training stattfinden, in dem weitere Bilder ergänzt werden. Diese können beispielsweise Braunbären zeigen, die sich im Schnee aufhalten. Dieser Trainingsvorgang kann iterativ so lange wiederholt werden, bis ein optimales Erkennungsresultat erreicht ist.

Ergebnisse in Millisekunden

Die Heatmap auf Basis der Grad-CAM-Methode bringt nicht nur Licht in die Deep-Learning-Black-Box, sondern erhöht auch das Vertrauen in die KI-Technologie: Durch die Kenntnis der entscheidungsrelevanten Bildbereiche lässt sich besser nachvollziehen, warum und auf welche Weise das Netz bestimmte Kriterien für die Klassifizierung ausgewählt hat. Auf dieser Grundlage kann dann der Prozess angepasst und das gesamte Training effizienter gestaltet werden. Unternehmen werden somit eher bereit sein, in anspruchsvolle Deep-Learning-Technologien zu investieren. Eine derartige Visualisierungs-Methodik ist zwar schon seit längerer Zeit am Markt verfügbar. Die Ausführungszeit lag hierbei aber im Sekundenbereich. Im Vergleich dazu überzeugt die neue, Grad-CAM-basierte Heatmap von MVTec mit ihrer Schnelligkeit: Die Technologie arbeitet im einstelligen Millisekunden-Bereich und ist daher für Online-Visualisierungs-Anwendungen optimal geeignet. Zudem läuft das Feature im neuen Software-Release Halcon 20.05 nun auch auf einer CPU, benötigt also keine energiehungrige GPU mehr. So lässt sich die Heatmap auch auf Geräten nutzen, die über keine dedizierte GPU verfügen. Dazu zählen z.B. viele Industrie-PCs, welche die hohe Abwärme eines leistungsstarken Grafikprozessors nicht ableiten können oder deren Gehäuse nicht genug Platz dafür bietet.

MVTec Software GmbH

Das könnte Sie auch Interessieren

Bild: Fraunhofer IGD
Bild: Fraunhofer IGD
Software Arrange beschleunigt Absortierprozesse

Software Arrange beschleunigt Absortierprozesse

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.

Bild: Coscom Computer GmbH
Bild: Coscom Computer GmbH
Software-Plattform für KI und maschinelles Lernen

Software-Plattform für KI und maschinelles Lernen

Vermehrt interessieren sich Unternehmen dafür, auf Basis ihrer Fertigungsinformationen Verbesserungspotenziale in der Produktionsplanung und -steuerung zu heben. Maschinelles Lernen und künstliche Intelligenz (KI) kann aber nur dann wirtschaftlich sinnvoll eingesetzt werden, wenn alle relevanten Daten im Zugriff sind und deren Struktur zu den Anwendungen passen. Das Coscom-ECO-System soll eine Plattformökonomie als Basis für Business Intelligence (BI) bieten.

Bild: Benteler International AG
Bild: Benteler International AG
Produktionsfehler: KI findet die Nadel im Heuhaufen

Produktionsfehler: KI findet die Nadel im Heuhaufen

In der Qualitätsprüfung ist Zeit ein wichtiger Faktor: Wer Fehler rechtzeitig findet, kann sie effektiv und kostensparend beheben. Gemeinsam mit dem Fraunhofer IEM setzt der Automobilzulieferer Benteler dafür in der Warmumformung von Fahrzeugteilen auf Echtzeit-Sensordaten und Künstliche Intelligenz. Damit können Produktionsfehler schneller erkannt, behoben und zukünftig sogar vermieden werden.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.