Industrial AI - Veranstaltungkalender

Ganztägig

Das könnte Sie auch Interessieren

Bild: ©pressmaster/Fotolia.com
post-thumbnail

KI für bessere Dokumentenprozesse

Unternehmen mit intensivem Endkundengeschäft bearbeiten täglich hunderte Dokumente – oftmals noch in Papierform. Häufig wird dieser Input automatisiert in bestehende Dokumentenmanagementsysteme eingespeist. Die Herausforderung dabei: Die Systeme müssen die Daten digital erfassen, auswerten, klassifizieren und dem richtigen Prozess, Vorgang, Kundenkonto oder Mitarbeiter zuordnen, was früher oder später zu Fehlern führen kann. Die Lösung ist Next Generation Input Management. Daniel Szlapka, Managing Director der DTI GmbH, erläutert im folgenden Beitrag, wie solche Systeme arbeiten, welche Rolle dabei künstliche Intelligenz (KI) spielt und wie Unternehmen den Return On Invest realisieren können.

Bild: ©PhonlamaiPhoto/istockphoto.com
post-thumbnail

Mit Machine Learning präzise Vorhersagen treffen

Viele Unternehmen haben das Potenzial selbstlernender Systeme, die Machine Learning benutzen, erkannt. Dieser Teilbereich der künstlichen Intelligenz basiert auf Algorithmen, die Muster und Gesetzmäßigkeiten in großen Datenmengen erkennen. Mithilfe neuronaler Netze lassen sich aus den Datenbeständen Rückschlüsse ziehen und Prognosen treffen. In vielen Branchen bereits etabliert, findet Machine Learning als Analyse- und Steuerungsinstrument nun auch zunehmend Anwendung in der Logistik. Ein Beispiel dafür ist die Verknüpfung des Microsoft Azure Machine Learning Studios mit Bestandsmanagement- oder ERP-Systemen. Mit diesen Lösungen lassen sich unter anderem Bestände und Bestellungen optimieren sowie Lagerprozesse erheblich verbessern.

Bild: SSV Software Systems GmbH
post-thumbnail

Ende-zu-Ende Technologie-Stack mit Funktechnik

Unzählige IoT-Sensoranwendungen streamen Rohdaten in die Cloud, um die dort vorhandenen Möglichkeiten der Datenverarbeitung zu nutzen. Neben den Sicherheitsbedenken hat dieser zentrale Lösungsansatz im industriellen Umfeld auf Grund der Bandbreiten-, Latenz- und Verfügbarkeitsprobleme aber auch funktionale Nachteile. Ein Cobot Voice/Gesture Interface für die Zusammenarbeit zwischen Menschen und Robotern, Qualitätssicherung per Machine Vision, Condition Monitoring mit Echtzeit-Anomalieerkennung und fahrerlose Transportsysteme (FTS) lassen sich mit einer einfachen Sensor-to-Cloud-Verbindung nicht realisieren. Hier ist zusätzlich auch eine Datenauswertung vor Ort erforderlich.