Was ist künstliche Intelligenz?

4. Natural Language Processing

Beim Natural Language Processing (NLP) geht es um die Verarbeitung von menschlicher Sprache durch ein Computerprogramm. Eines der bekanntesten Anwendungsbeispiele ist die Spam-Erkennung, bei der die Betreffzeile und der Text einer E-Mail geprüft werden und entschieden wird, ob es sich um Junk handelt. NLP wird hauptsächlich eingesetzt für Textübersetzungen, Stimmungsanalysen und Spracherkennung.

5. Robotik

Die Robotik beschäftigt sich mit der Konstruktion und Herstellung von Robotern. Sie werden nicht nur in der Produktion oder von der NASA verwendet, um große Objekte im Weltraum zu bewegen. Mithilfe von maschinellem Lernen können Roboter auch in sozialen Umgebungen interagieren.

Selbstfahrende Autos: Durch die Kombination von Computer Vision und Bilderkennung können Fahrzeuge automatisiert, ohne den Einfluss eines menschlichen Fahrers, fahren, eine Spur halten, Hindernissen ausweichen und einparken.

Fazit

KI durchdringt in ungeahnter Geschwindigkeit unseren Alltag in Form digitaler Assistenten, kooperativer Roboter, autonomer Fahrzeuge und Drohnen. Big Data und die amerikanischen Internetkonzerne treiben die Entwicklung Künstlicher Intelligenz voran, unterstützt von immer leistungsfähigeren Hard- und Softwareplattformen. Sie sind das Instrumentarium, das Machine Learning benötigt, um große Datenmengen verarbeiten zu können, komplexe Zusammenhänge zu erkennen und daraus zu lernen, ohne explizite Programmierung. Es wird nicht mehr lange dauern, bis die ersten smarten, vorausschauenden Systeme sich selbst überwachen, Prognosen liefern und eigenständig Maßnahmen vorschlagen oder durchführen. Die Forschung befindet sich noch in den Anfängen, so dass die technologische Optimierung momentan mit einem enormen Mehrwert für die Nutzer und Unternehmen einhergeht.

Seiten: 1 2 3Auf einer Seite lesen

Weissenberg Business Consulting GmbH
www.weissenberg-solutions.de

Das könnte Sie auch Interessieren

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.