Cyber-Bedrohungen 2020

Fortgeschrittene KI und intelligente Bedrohungs-Desinformation

Cyber-Bedrohungen 2020

Bild: ©kras99/stock.adobe.com

Der Cybersecurity-Anbieter Fortinet hat die Prognosen von FortiGuard Labs zur Bedrohungslandschaft für 2020 veröffentlicht. Die Analysten von Fortinet zeigen darin Methoden, die Cyber-Kriminelle in der nahen Zukunft voraussichtlich einsetzen werden und wie sich Unternehmen dagegen schützen können.

Cyber-Angriffe sind in den vergangenen Jahren ausgefeilter, effektiver und schneller geworden. Bei Fortinet geht man davon aus, dass sich dieser Trend fortsetzt, sofern nicht mehr Unternehmen ihre Security-Strategien ändern. Die Security-Experten gehen unter anderem davon aus, dass Fortschritte bei künstlicher Intelligenz (KI) und Threat Intelligence beim Kampf gegen Cyberkriminelle eine entscheidende Rolle spielen.

KI der dritten Generation

Bei Fortinet geht man davon aus, dass die dritte KI-Generation regionale Lernknoten miteinander verbinden wird, statt Daten an ein zentrales, monolithisches Rechenzentrum zu leiten. Dadurch können lokal gesammelte Informationen gemeinsam genutzt, korreliert und stärker verteilt analysiert werden. Diese Entwicklung spielt eine wichtige Rolle, um wachsende Edge-Umgebungen abzusichern.

Überblick über die Bedrohungen

Traditionell nutzt maschinelles Lernen Threat Intelligence aus Feeds, internem Netzwerkverkehr und Datenanalysen. Hinzu kommen laut Fortinet künftig eine Flut aus relevanten Informationen von neuen Edge-Geräten und lokalen Lernknoten. Indem ein KI-System diese Echtzeitinformationen verfolgt und korreliert, gewinnt es nicht nur einen umfassenderen Überblick über die Bedrohungslandschaft. Es kann auch anpassen, wie lokale Systeme auf lokale Ereignisse reagieren. Wenn KI-Systeme ihre Informationen im gesamten Netzwerk teilen, können sie Bedrohungen erkennen, korrelieren, verfolgen und sich auf sie vorbereiten. Ein solches verbundenes Lernsystem vernetzt Datensätze. Dadurch sind Lernmodelle in der Lage, sich an veränderte Umgebungen und Trends anzupassen. Ein Ereignis, das an einem Punkt eintritt, kann dann die Intelligenz des gesamten Systems verbessern. Mithilfe von KI ist ein System zudem in der Lage, automatisch nach Angriffen zu suchen und sie zu erkennen – sowohl bevor als auch nachdem sie stattfinden. Indem Unternehmen maschinelles Lernen mit statistischen Analysen kombinieren, können sie KI-gestützt maßgeschneiderte Handlungsanweisungen entwickeln. Mit solchen Threat Playbooks lassen sich zugrunde liegende Muster aufdecken. Diese ermöglichen es dem KI-System, vorherzusagen, was der Angreifer als Nächstes tun wird, wo die nächste Attacke stattfindet und welche Akteure die wahrscheinlichsten Täter sind.

Angreifer täuschen

Wenn es darum geht, Angreifer in die Irre zu führen, sind Verteidiger im Vorteil, denn sie verfügen über Threat Intelligence, auf die Angreifer in der Regel keinen Zugriff haben. Diese Informationen können mittels KI aufbereitet und für Täuschungsmanöver genutzt werden. Cyber-Kriminelle, die versuchen Traffic-Muster auszuspionieren, müssen dann zwischen echtem und irreführendem Netzwerkverkehr unterscheiden. Mithilfe von KI und Playbooks lässt sich Täuschungstechnologie so verbessern, dass es für Angreifer unmöglich wird, echte Transaktionen zu erkennen. Cyber-Kriminelle können so auch beim Spionieren erwischt werden.

Schwarmtechnologie

In den vergangenen Jahren hat Schwarmtechnologie in Verbindung mit maschinellem Lernen und KI großes Potenzial für Cyber-Attacken gezeigt. Cyber-Kriminelle könnten Bot-Schwärme nutzen, um ein Netzwerk zu infiltrieren, die interne Verteidigung zu überwältigen und Daten effizient aufzuspüren und zu stehlen. Spezialisierte Bots werden in der Lage sein, in Echtzeit gesammelte Informationen zu teilen und zu korrelieren. So kann ein Schwarm seine Angriffstechnik verbessern, um ein Ziel oder sogar mehrere Ziele gleichzeitig zu kompromittieren.

5G und Edge Computing als Waffe

Der neue Mobilfunkstandard 5G kann am Ende die Entwicklung funktionaler, Schwarm-basierter Angriffe beschleunigen. Denn er ermöglicht es, lokale Ad-hoc-Netzwerke aufzubauen, die schnell Informationen und Anwendungen austauschen und verarbeiten. Indem Cyber-Kriminelle 5G und Edge-Computing als Waffe einsetzen, könnten sie kompromittierte Geräte als Kanal für Schadcode nutzen. Infizierte Geräte könnten in Gruppen zusammenarbeiten, um Opfer in 5G-Geschwindigkeit anzugreifen. Solche Attacken werden so schnell, intelligent und lokal stattfinden, dass ältere Security-Technologien an ihre Grenzen stoßen.

Zero-Day-Angriffe nehmen zu

Während sich die Angriffsfläche vergrößert, wird es auch einfacher, Schwachstellen zu entdecken. Dadurch steigt die Zahl der potenziell ausnutzbaren Zero-Day-Schwachstellen. Auch Techniken wie KI-Fuzzing und Zero-Day-Mining tragen dazu bei, dass Zero-Day-Angriffe exponentiell zunehmen werden. Um diesem Trend entgegenzuwirken, müssen Unternehmen geeignete Sicherheitsmaßnahmen treffen.

Fortinet GmbH
https://www.fortinet.com/de

Das könnte Sie auch Interessieren

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.