Anomaly Detection

Anomaly Detection

Anomalien einfach und zielsicher mit wenigen Bildern erkennen

Bild: MVTec Software GmbH

Deep-Learning-Verfahren werden sowohl für die Identifikation von Objekten als auch für die Detektion von Fehlern eingesetzt. Mit der Anomaly Detection in Halcon 19.11 lassen sich nun auch Anomalien lokalisieren, deren Aussehen und Erscheinungsform im Vorfeld nicht bekannt sind. Dabei werden defektfreie Bilder für das Training genutzt, was den Aufwand deutlich reduziert.


Die industrielle Bildverarbeitung spielt eine wichtige Rolle bei der Fehlerinspektion im Rahmen der Qualitätssicherung von Produkten. Hierbei kommen regelbasierte Systeme ebenso zur Anwendung wie moderne Technologien auf Basis von künstlicher Intelligenz (KI). In erster Linie zählt dazu Deep Learning, das auf Convolutional Neural Networks (CNNs) beruht. Regelbasierte Lösungen müssen sehr viele verschiedene Erscheinungsformen von Anomalien abdecken und erfordern daher einen entsprechend hohen Programmieraufwand. Demgegenüber besteht der entscheidende Vorteil von KI-Systemen darin, dass sie durch Training eigenständig dazulernen. Dabei läuft das Aufspüren von Defekten in mehreren Schritten ab: Zunächst muss eine genügend große Anzahl von Trainingsbildern von allen zu erkennenden Defekten gesammelt werden. Diese werden dann gelabelt, also mit einem Etikett versehen, und anschließend wird das zugrundeliegende CNN mit diesen Bildern trainiert.

Einteilung in Klassen durch Labeling-Prozess

In diesem Kontext kommen Deep-Learning-Algorithmen in verschiedenen Erkennungsverfahren zur Anwendung: Bei der Klassifikation werden Objekte oder Fehler rein anhand von Bilddaten in bestimmte Klassen eingeteilt. Bei der Objektdetektion erfolgt der Labeling-Prozess durch das Einzeichnen von Rechtecken. Diese rahmen in jedem einzelnen Bild die zu erkennenden Gegenstände ein und geben dann entsprechend der jeweiligen Applikation die Objektklasse an. So lernt der Deep-Learning-Algorithmus, welche Merkmale zu welcher Klasse passen. Im Ergebnis lassen sich dann Objekte oder Fehler automatisch lokalisieren und einer speziellen Klasse zuordnen. Bei der semantischen Segmentierung schließlich wird jeder einzelne Pixel eines Bildes einer bestimmten Klasse zugewiesen. Das Ergebnis sind Regionen, die einer Klasse zugeordnet werden können. Die Herausforderung bei allen Deep-Learning-basierten Erkennungsmethoden ist allerdings, dass sie oft eine relativ hohe Anzahl von Trainingsbildern erfordern, die alle gelabelt werden müssen, um sie einer Klasse zuzuordnen. Zudem werden für den Trainingsprozess Bilder benötigt, auf denen Objekte mit den zu erkennenden Defekten zu sehen sind. So müssen je nach Anwendung 300 Bilder und mehr aufgenommen werden, die den entsprechenden Gegenstand mit einem bestimmten Fehler wie einem Kratzer oder einer Verformung in verschiedenen Ausprägungen zeigen. Dies zieht einen hohen Aufwand nach sich, den viele Unternehmen scheuen. Überdies gibt es Applikationen, bei denen solche Schlecht-Bilder nicht in ausreichender Anzahl zur Verfügung stehen.

Erkennung von Anomalien

Eine praktikable Lösung hierfür bietet MVTec mit Halcon 19.11. Darin ist ein neues Feature namens Anomaly Detection integriert, das die Erkennung von Anomalien auf eine neue Stufe hebt. Das Besondere an dem Tool ist, dass es mit sehr wenigen Trainingsbildern auskommt. So reichen für das Training des Deep-Learning-Netzes nur etwa 20 bis maximal 100 Bilder aus. Zudem werden keine Schlecht-Bilder mehr benötigt. Das System ist in der Lage, den Trainingsprozess rein anhand von defektfreien Bildern durchzuführen. Nach dem Training werden in allen weiteren Bildern Abweichungen verschiedenster Art zielsicher lokalisiert. Für diese Art der Fehlererkennung ist es also nicht mehr notwendig, vorab Trainingsbilder von defektbehafteten Objekten zu labeln. Damit lassen sich deep-learning-basierte Inspektionsaufgaben noch effizienter und mit wesentlich geringerem Aufwand realisieren. Mit dem neuen Feature werden somit auch Anomalien entdeckt, deren Aussehen vorher nicht bekannt ist. Diese Abweichungen können sich etwa auf die Farbe, die Struktur oder auch auf eine Kontaminierung beziehen. Beispielsweise kann ein Getränkeabfüller bei der Prüfung der Gefäße kleine Kratzer, Risse oder Sprünge am Flaschenhals verlässlich lokalisieren. Dabei wird im Rahmen des Trainingsprozesses eine so genannte Anomaly Map erstellt. Auf dieser werden Bereiche, in denen eine Anomalie wahrscheinlich ist, mit einem Grauwert belegt. Durch die Segmentierung dieses Bildes lässt sich pixelgenau feststellen, an welchen Stellen sich mit hoher Wahrscheinlichkeit ein Defekt befindet und wie groß dieser ist. Mit Halcon 19.11 ließ sich dieser Prozess in Tests mit nur 20 Trainingsbildern innerhalb von sechs Minuten realisieren.

Fazit

Deep-Learning-basierte Methoden zur Fehlererkennung erfordern in der Regel eine hohe Anzahl von Trainingsbildern, auf denen das Objekt mit dem jeweiligen Defekt zu sehen ist. Mit dem neuen Feature Anomaly Detection lässt sich für das Training die Anzahl auf 20 bis maximal 100 Bilder reduzieren. Zudem können diese defektfrei sein, d.h. sie müssen die zu erkennende Anomalie nicht im Motiv zeigen. Damit entfällt auch das Labeln der Bilder, was den Aufwand und die Kosten für Unternehmen deutlich senkt.

MVTec Software GmbH
www.mvtec.com

Das könnte Sie auch Interessieren

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.