Höhere Erkennungsraten mit Multi-ToF-Plattform und Deep Learning

Mit einer Multi-ToF-Plattform, bei der verschiedene bildgebende Sensoren an einen Nvidia CPU+GPU basierten Hub angebunden sind, lassen sich mit Deep Learning, im Vergleich zu reinen RGB-Bildern, höhere Erkennungsleistungen erzielen.


 (Bild: BECOM Systems GmbH)

Bild: Becom Systems GmbH

Die Evotegra GmbH begleitet Deep Learning Projekte von der Definition der Datenstrategie bis zur tiefen Systemintegration auf der jeweiligen Zielhardware. Ein sehr gutes Beispiel hierfür ist die Multi-ToF-Plattform von Becom, bei der verschiedene Sensoren an einen Nvidia CPU+GPU basierten Hub angebunden werden können. Neben Time-of-Flight (ToF) Daten, lassen sich auch Farbsensoren oder Sensoren anderer Wellenlängen (IR, Hyperspectral Imaging) anbinden und liefern zusätzliche Kanäle für erweiterte Anwendungen oder die Erhöhung der Qualität. Eine Anwendung ist die Leergutkontrolle in der Getränkeindustrie. Obwohl eine auf den ersten Blick relativ kontrollierte Umgebung, ergeben sich durch verschiedene Farben, Formen, Materialien, Verschlüsse oder Fremdkörper eine große Varianz an Szenarien im Feld. Die verwendeten ToF-Sensoren liefern neben den Tiefendaten auch ein IR-Graustufenbild. Dieses ist gut nutzbar, um das Netzwerk zu trainieren und bei schwierigen Situationen, wie Glas oder stark reflektierender Verschlüsse, robustere Ergebnisse zu liefern. Durch die aktive Beleuchtung sind die Daten zudem weitgehend unabhängig von den Umgebungsbedingungen.

Datenanalyse per KI

Wie bei jedem Projekt beginnt man mit der Definition der initialen Klassen und einer ersten Datenanalyse. Danach definiert man die Datenerfassungs-Strategie. Auch für die künstliche Intelligenz (KI) gilt das GIGO Prinzip (Garbage In, Garbage Out). Dauer und Kosten eines Projekts werden maßgeblich von der Zeit bestimmt, die man benötigt, um die Daten in der notwendigen Qualität und Quantität zu beschaffen. Eine große Menge an schlechten Daten ist ebenso problematisch wie zu wenig Daten. Ein Datensatz zum Training eines neuronalen Netzwerkes umfasst typischerweise eine bis vier Millionen Datenpunkte. Da gerade am Anfang eines Projektes in der Regel nicht so viele Daten zur Verfügung stehen, werden die Daten augmentiert, d.h. auf Basis der vorhandenen Daten werden künstliche Variationen erzeugt. Ziel im Laufe eines Projekts ist es jedoch, die künstlichen Daten durch echte Daten zu ersetzen. Ein Einsatz von Hilfskräften oder speziellen Dienstleistern zur Datenerhebung erfordert entweder hohen Nachbearbeitungsaufwand oder ist aufwendig und teuer. Stattdessen können neuronale Netzwerke bereits frühzeitig die Datenaggregation unterstützen. In zyklischen Abständen werden mit Hilfe der neu gewonnen Daten verbesserte Netzwerke trainiert. Der Aufwand für die Extraktion der Daten sinkt im Laufe eines Projektes stetig. Währenddessen kann bereits die Prozessintegration erfolgen.

Bessere Ergebnisse als mit RGB

Hier kommt ein Vorteil von ToF zum Tragen: der Sensor liefert ein Graustufenbild das synchron mit den drei räumlichen Kanälen X,Y,Z ist. Aufgrund der räumlichen Trennung sind die vier ToF Kanäle deutlich reicher an Informationen als bei einer RGB-Kamera. Da Farben immer von der Beleuchtung abhängig sind, bieten RGB-Informationen besonders in unkontrollierten Umgebungen oft nur wenig Vorteile gegenüber einem Graustufenbild. Ein weiterer Vorteil der ToF-Kamera ergibt sich dadurch, dass ein Label in einem Kanal pixelgenau auf die anderen Kanäle übertragen werden kann. Mit dem höheren Informationsgehalt können Deep-Learning-Lösungen grundsätzlich eine höhere Erkennungsleistung erzielen.

Deep Learning Ready

Im Rahmen der Umsetzung kundenspezifischer Lösungen kann die Evotegra Basis-Software in der Regel kostenfrei genutzt werden. Gleichzeitig bietet die Becom Multi-ToF-Plattform auf Basis des Nvidia Jetson standardmäßig eine breite Unterstützung für Deep-Learning-Algorithmen – Zusätzliche Hardware ist nicht notwendig.

Fazit

Sensorsysteme mit einer Kombination aus Bildern und räumlichen Daten, erzielen zusammen mit Deep Learning eine höhere Erkennungsleistung und damit Kostenvorteile, ohne in der Trainingsphase höhere Aufwände zu erzeugen. Die Lösungen können ein Qualitätsniveau erreichen, das qualitativ mit der visuellen Wahrnehmung des Menschen vergleichbar ist. Quantitativ sind sie dem Menschen jedoch deutlich überlegen.

BECOM Systems GmbH
www.becom-group.com

Das könnte Sie auch Interessieren

Bild: Benteler International AG
Bild: Benteler International AG
Produktionsfehler: KI findet die Nadel im Heuhaufen

Produktionsfehler: KI findet die Nadel im Heuhaufen

In der Qualitätsprüfung ist Zeit ein wichtiger Faktor: Wer Fehler rechtzeitig findet, kann sie effektiv und kostensparend beheben. Gemeinsam mit dem Fraunhofer IEM setzt der Automobilzulieferer Benteler dafür in der Warmumformung von Fahrzeugteilen auf Echtzeit-Sensordaten und Künstliche Intelligenz. Damit können Produktionsfehler schneller erkannt, behoben und zukünftig sogar vermieden werden.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

Strukturierter Beratungsansatz für KI-Einsatzbereiche im Unternehmen

„Künstliche Intelligenz ist eine, wenn nicht die wichtigste Zukunftstechnologie für Unternehmen.“ Diese Aussage bejahen 70 Prozent der Befragten der jüngsten Bitkom-Studie zu KI. Aber nur 10 Prozent aller Unternehmen haben KI-Technologie aktiv im Einsatz, lediglich 30 Prozent planen und diskutieren deren Anwendung. Was ist der Grund für diese große Diskrepanz?

Bild: Blue Yonder, Inc.
Bild: Blue Yonder, Inc.
Künstliche Intelligenz – mehr als eine Wissenschaft

Künstliche Intelligenz – mehr als eine Wissenschaft

Data Science ist mittlerweile ein fester Bestandteil der strategischen Planung in vielen Unternehmen. Um künftige Entwicklungen realistisch zu planen, brauchen wir Künstliche Intelligenz (KI) und Maschinelles Lernen (ML). Insbesondere im Einzelhandel vertrauen immer mehr große Player auf KI-Lösungen, die präzise Prognosen ermöglichen und zum Beispiel Bestände oder Preise optimieren. Doch viele Entscheidungsträger glauben noch nicht daran, dass KI in den Lieferketten der Zukunft eine tragende Rolle spielen wird. Der Grund hierfür liegt in einer falschen Sicht auf die Wissenschaft.

Bild: ©Stock57/stock.adobe.com
Bild: ©Stock57/stock.adobe.com
KI-Verfahren für die Produktion

KI-Verfahren für die Produktion

Mathematiker der Hochschule Darmstadt (h_da) entwickeln gemeinsam mit dem Hanauer Simulationsdienstleister und Softwareunternehmen SimPlan und dem Automationsexperten Fibro Läpple Technology neue KI-Technologien. Im Rahmen des Loewe-Projekts ‚KISPo‘ will das Konsortium eine autonome, selbstlernende Steuerungssoftware für Produktionsanlagen entwickeln, wie sie z.B. bei der Herstellung von Komponenten für Windräder oder Elektromotoren zum Einsatz kommen. Es wäre die erste KI-Software dieser Art. Damit würde eine von Industrieverbänden und Forschung lange bemängelte Technologielücke geschlossen. Das Land Hessen fördert das Projekt für zwei Jahre mit 320.000 Euro. Konsortialführerin ist die Hochschule Darmstadt.

Bild: ©NicoElNino/stock.adobe.com
Bild: ©NicoElNino/stock.adobe.com
Chancen und Herausforderungen von Machine Learning in der Fertigung

Chancen und Herausforderungen von Machine Learning in der Fertigung

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) sind heutzutage bekannte Technologien und kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning wird es IT-Systemen ermöglicht, Muster und Zusammenhänge aus Daten zu lernen und sich selbst zu verbessern. Dabei ist keine explizite Programmierung notwendig. Die Bearbeitung von Kundenanfragen, die Erkennung möglicher Störfälle sowie unerwarteter Ereignisse wie z.B. Cyberangriffe sind klassische Anwendungsfelder von ML. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu.

Bild: ©Shuo/stock.adobe.com
Bild: ©Shuo/stock.adobe.com
Sensoren lernen das Denken

Sensoren lernen das Denken

Im Fraunhofer-Leitprojekt NeurOSmart forscht das Fraunhofer IPMS zusammen mit vier weiteren Instituten (ISIT, IMS, IWU, IAIS) unter Leitung des Fraunhofer ISIT gemeinsam an energieeffizienten und intelligenten Sensoren für die nächste Generation autonomer Systeme. Dabei sollen die Brücken zwischen Wahrnehmung und Informationsverarbeitung durch innovative Elektronik neu definiert werden.

Bild: ©ipopba/stock.adobe.com
Bild: ©ipopba/stock.adobe.com
Wie KI 2022 praktikabel wird

Wie KI 2022 praktikabel wird

Künstliche Intelligenz war bereits in der Vergangenheit in aller Munde, schaffte es aber doch oft nicht bis in die Anwendung. Das wird sich 2022 ändern – auch weil sich langsam Standards etablieren und sich neue, konkrete Einsatzmöglichkeiten ergeben. In welchen Bereichen Business-Implementierungen zu erwarten sind, erläutert Bernhard Niedermayer, Head of AI bei Cloudflight.